Intro to Digital Design Combinational Logic

Instructor: Justin Hsia

Teaching Assistants:

Emilio Alcantara Eujean Lee

Naoto Uemura Pedro Amarante

Wen Li

Introducing Your Course Staff

- Your Instructor: just call me Justin
 - CSE Associate Teaching Professor
 - From California (UC Berkeley and the Bay Area)
 - Raising a toddler takes up energy and dictates my schedule

TAs:

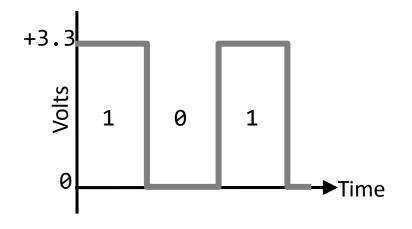
- Available in labs, office hours, and on Ed discussion
- An invaluable source of information and help
- Get to know us we are here to help you succeed!

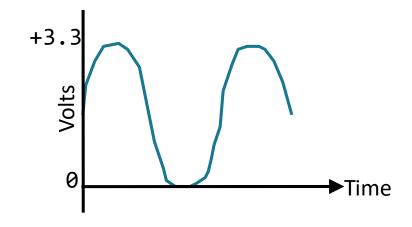
Course Motivation

- Electronics an increasing part of our lives
 - Computers & phones
 - Vehicles (cars, planes)
 - Robots
 - Portable & household electronics

- An introduction to digital logic design
 - Lecture: How to think about hardware, basic higher-level circuit design techniques
 - preparation for EE/CSE469
 - Lab: Hands-on FPGA programming using Verilog preparation for EE/CSE371

Digital vs. Analog





Digital:

Discrete set of possible values

Binary (2 values):

On, 3.3 V, high, TRUE, "1" Off, 0 V, low, FALSE, "0"

Analog:

Values vary over a continuous range

Digital vs. Analog Systems

- Digital systems are more reliable and less error-prone
 - Slight errors can cascade in Analog system
 - Digital systems reject a significant amount of error; easy to cascade
- Computers use digital circuits internally
 - CPU, memory, I/O
- Interface circuits with "real world" often analog
 - Sensors & actuators

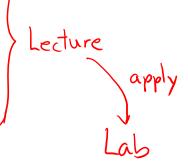
This course is about logic design, not system design (processor architecture), and not circuit design (transistor level)

Digital Design: What's It All About?

- Come up with an implementation using a set of primitives given a functional description and constraints
- Digital design is in some ways more art than a science
 - The creative spirit is in combining primitive elements and other components in new ways to achieve a desired function
- However, unlike art, we have objective measures of a design (i.e., constraints):
 - Performance
 - Power
 - Cost

Digital Design: What's It All About?

- How do we learn how to do this?
 - Learn about the primitives and how to use them
 - Learn about design representations
 - Learn formal methods and tools to manipulate representations
 - Look at design examples
 - Use trial and error CAD tools and prototyping (practice!)



Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

Bookmarks

- Website: https://courses.cs.washington.edu/courses/cse369/24sp/
 - Schedule (lecture slides, lab specs), weekly calendar, other useful documents
- Ed Discussion: https://edstem.org/us/courses/56771/
 - Announcements made here
 - Ask and answer questions staff will monitor and contribute
- Gradescope: https://www.gradescope.com/courses/746339/
 - Lab submissions, Quiz grades, regrade requests
- Canvas: https://canvas.uw.edu/courses/1718545/
 - Grade book, Zoom links, lecture recordings

Grading

- * Labs (66%)
 - 6 regular labs 1 week each
 - Labs 3-4: 60 points each, Labs 1&2, 5-7: 100 points each
 - 1 "final project" 2 weeks
 - Lab 8 Check-In: 10 points, Lab 8: 150 points
- 3 Quizzes (no final exam)
 - Quiz 1 (10%): 20 min in class on April 23
 - Quiz 2 (10%): 30 min in class on May 14
 - Quiz 3 (14%): 60 min in class on May 28
- ❖ This class uses a straight scale (\geq 95% \rightarrow 4.0)
 - Extra credit points count the same as regular points

Labs

- Lab Hours: Wed & Thu 2:30-5:20 pm (CSE 003)
- Each student will get a lab kit for the quarter
 - Lab kit picked up from CSE 003 during labs/OHs this week
 - Install software on laptop (Windows or VM)
- Labs are combination of report + demo
 - Submit via Gradescope Wednesdays before 2:30 pm
 - 10-minute demos done in lab sections (sign-up process)
- Late penalties:
 - No lab report can be submitted more than two days late
 - 5 late day tokens to prevent penalties, 10%/day after that
 - No penalties on lab demos, but must be done by EOD Friday

Collaboration Policy

- Labs and project are to be completed individually
 - Goal is to give every student the hands-on experience
 - Violation of these rules is grounds for failing the class

***** OK:

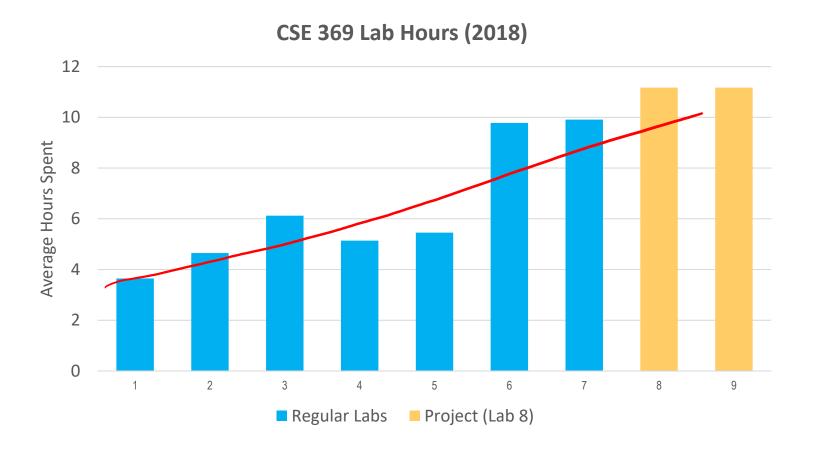
- Discussing lectures and/or readings, studying together
- High-level discussion of general approaches
- Help with debugging, tools peculiarities, etc.

Not OK:

- Developing a lab together
- Giving away solutions or having someone else do your lab for you

Course Workload

The workload (3 credits) ramps up significantly towards the end of the quarter:

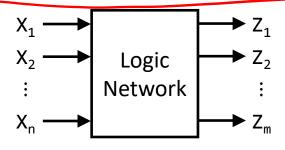


Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

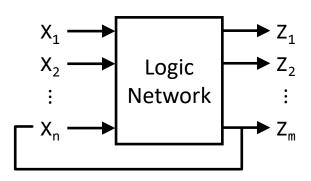
Combinational vs. Sequential Logic

Combinational Logic (CL)



- Network of logic gates without feedback
- Outputs are functions only of inputs

Sequential Logic (SL)



- The presence of feedback introduces the notion of "state"
- Circuits that can "remember" or store information

Representations of Combinational Logic

- 2 * Circuit Description
 - Transistors Not covered in 369
 - Logic Gates
- → Truth Table
- **Ч** ❖ Boolean Expression

All are equivalent!

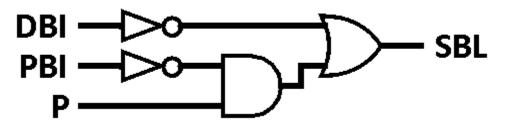
Example: Simple Car Electronics

- Door Ajar (DriverDoorOpen, PassengerDoorOpen)
 - \blacksquare DA = DDO + PDO

W UNIVERSITY of WASHINGTON

- High Beam Indicator (LightsOn, HighBeamOn)
 - $HBI = LO \cdot HBO$

- Seat Belt Light (DriverBeltIn, PassengerBeltIn, Passenger)
 - SBL = \overline{DBI} + (P · \overline{PBI})



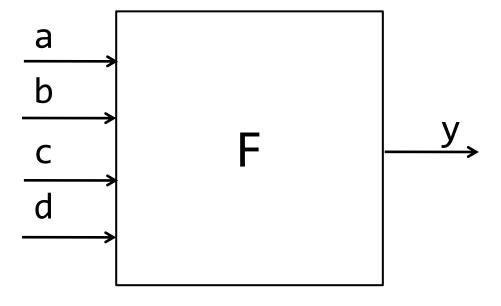
Truth Tables

- Table that relates the inputs to a combinational logic (CL) circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 instead of high/low voltage
 - Shows output for <u>every</u> possible combination of inputs ("black box" approach)

- How big is the table?
 - 0 or 1 for each of N inputs 2^N rows
 - Each output is a <u>separate</u> function of inputs, so don't need to add rows for additional outputs

CSE369, Spring 2024

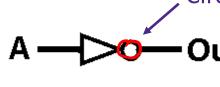
CL General Form



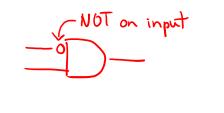
If we have N inputs, how many distinct functions F do we have?

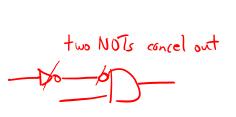
	a	b	c	d	y (01)
	0	0	0	0	F(0,0,0,0)
\	0	0	0	1	F(0,0,0,1)
\setminus	0	0	1	0	F(0,0,1,0)
1	0	0	1	1	F(0,0,1,1)
	0	1	0	0	F(0,1,0,0)
	0	1	0	1	F(0,1,0,1)
/	0	1	1	0	F(0,1,1,0)
/	1	1	1	1	F(0,1,1,1)
	1	0	0	0	F(1,0,0,0)
	1	0	0	1	F(1,0,0,1)
	1	0	1	0	F(1,0,1,0)
	1	0	1	1	F(1,0,1,1)
	1	1	0	0	F(1,1,0,0)
	1	1	0	1	F(1,1,0,1)
	1	1	1	0	F(1,1,1,0)
	_1	1	1	1	F(1,1,1,1)

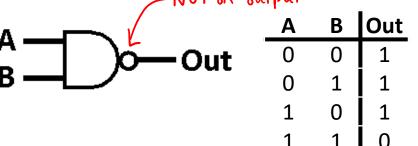
Logic Gate Names and Symbols

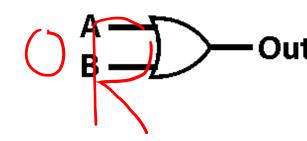


Circle indicates NO				
	Α	Out		
Out	0	1		
	1	0		









Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

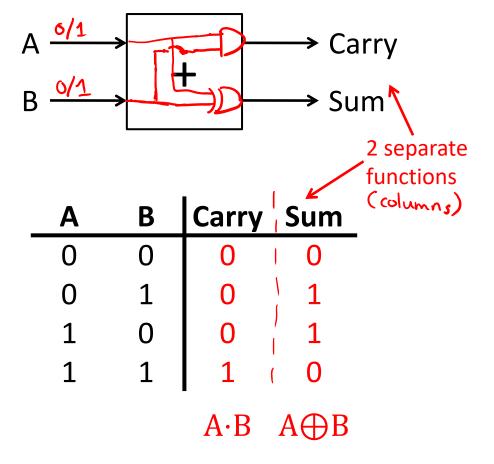
	Α	В	Out
•	0	0	1
•	0	1	0
	1	0	0
	1	1	1

More Complicated Truth Tables

3-Input Majority
How many rows? $2^3 = 8 \text{ rows}$

A	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1 -	→ 1
1	0	0	0
1	0	1 -	→ 1
1 1	1	0 -	→ 1
1	1	<u>1</u> -	→ 1

1-bit Adder



Boolean Algebra

- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1
- → ◆ Overbar is NOT: "logical complement"
 - If A is 0, then \overline{A} is 1 and vice-versa
- ∨ ❖ Plus (+) is 2-input OR: "logical sum"
- ∧ ❖ Product (·) is 2-input AND: "logical product"
 - All other gates and logical expressions can be built from combinations of these
 - e.g., A XOR B = A \oplus B = $\overline{A}B + \overline{B}A$

Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs

 sets to 1 when input combination matches

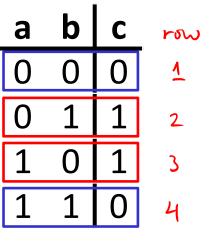
We can show that these

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

 sets to 0 when input combination matched

are equivalent!

 $C = (A + B) \cdot (\overline{A} + \overline{B})$



Basic Boolean Identities

$$\star X + 0 = X$$

$$*X + 1 = 1$$

$$*X + X = X$$

$$*X + \overline{X} = 1$$

$$* \overline{\overline{X}} = X$$

$$*X \cdot 1 = X$$

$$*X \cdot 0 = 0$$

$$* X \cdot X = X$$

$$* X \cdot \overline{X} = 0$$

Basic Boolean Algebra Laws

Commutative Law:

$$X + Y = Y + X$$

W UNIVERSITY of WASHINGTON

$$X \cdot Y = Y \cdot X$$

Associative Law:

$$X+(Y+Z) = (X+Y)+Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

Distributive Law:

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$

$$X+YZ = (X+Y) \cdot (X+Z)$$

Advanced Laws (Absorption)

$$\star X + XY = X$$

$$* XY + X\overline{Y} = X$$

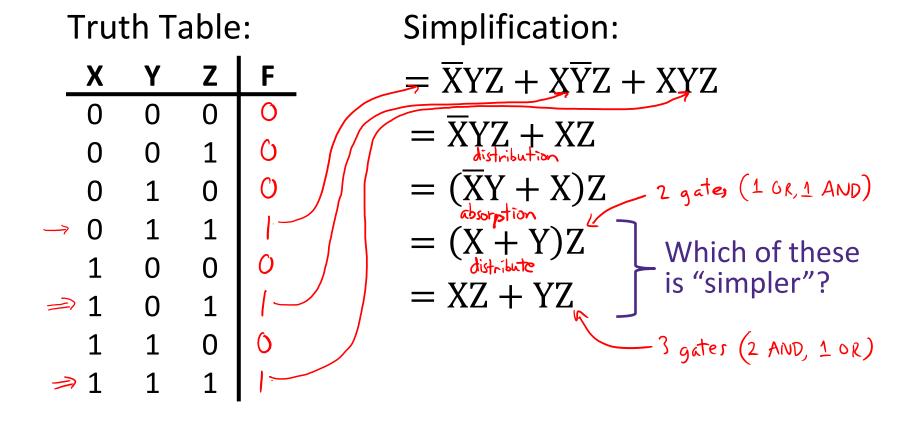
$$* X(X + Y) = X$$

$$(X + Y)(X + \overline{Y}) = X$$

$$* X(\overline{X} + Y) = XY$$

Practice Problem

* Boolean Function: $F = \overline{X}YZ + \underline{X}Z$



Technology

Break

Lecture Outline

- Course Logistics
- Combinational Logic Review

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates
- Faster hardware?
 - Fewer inputs implies faster gates in some technologies
 - Fan-ins (# of gate inputs) are limited in some technologies
 - Fewer levels of gates implies reduced signal propagation delays
 - # of gates (or gate packages) influences manufacturing costs
 - Simpler Boolean expressions → smaller transistor networks → smaller circuit delays

 → faster hardware

Are Logic Gates Created Equal?

No!

2-Input Gate Type	# of CMOS transistors	
NOT	2	Simplest, but not too useful
AND	6	
OR	6	
NAND	4	Puseful, and simpler than
NOR	4) useful, and simpler than alternative,
XOR	8	
XNOR	8	

- Can recreate all other gates using only NAND or only NOR gates
 - Called "universal" gates
 - e.g., A NAND A = \overline{A} , B NOR B = \overline{B}
 - DeMorgan's Law helps us here!

DeMorgan's Law

$$* \overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$* \overline{X \cdot Y} = \overline{X} + \overline{Y}$$

				NOR		NAND	
X	Y	\overline{X}	\overline{Y}	$\overline{X + Y}$	$\overline{X} \cdot \overline{Y}$	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$
0	0	1	1	1	1	1	1
0	1	1	0	0	O	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	6

- In Boolean Algebra, converts between AND-OR and OR-AND expressions
 - $Z = \overline{ABC} + \overline{ABC} + A\overline{BC}$
 - $\overline{Z} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$
- At gate level, can convert from AND/OR to NAND/NOR gates
 - "Flip" all input/output bubbles and "switch" gate

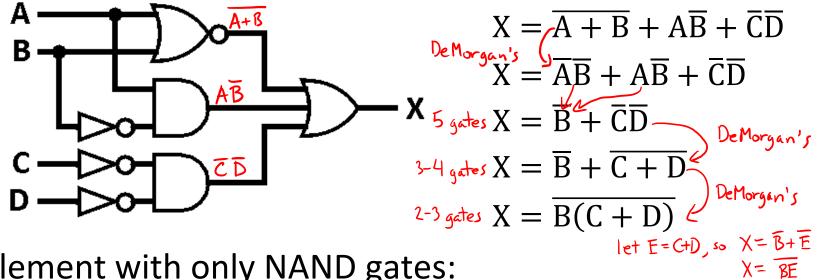
$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$\begin{array}{c|c}
C & \Leftrightarrow & A & \\
C & & \\
\end{array}$$

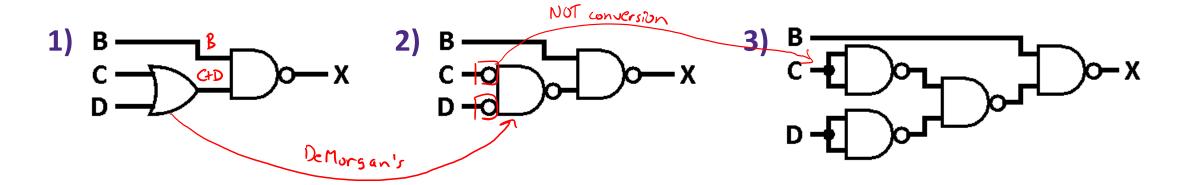
)o-c
$$\Leftrightarrow \beta - \beta - c$$
 $\Rightarrow A - \beta - c$ $\Rightarrow A - \beta - c$

DeMorgan's Law Practice Problem

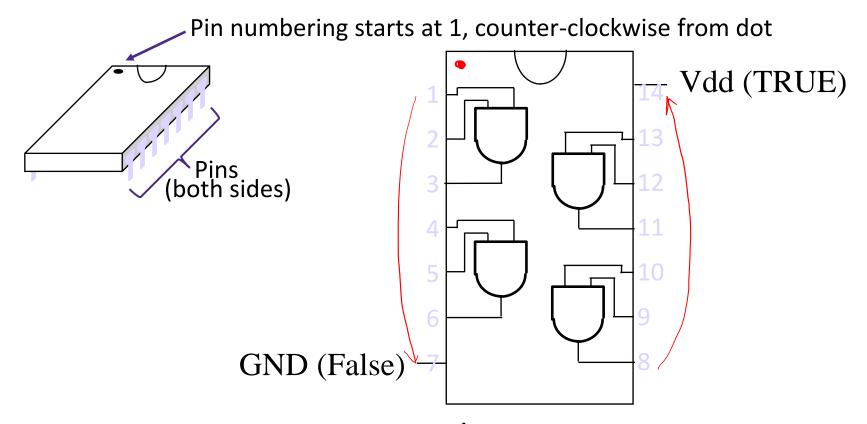
Simplify the following diagram:



Then implement with only NAND gates:



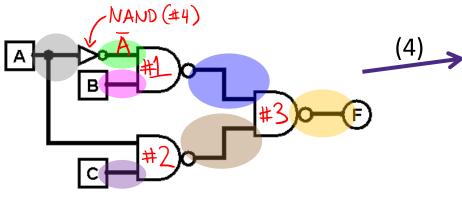
Transistor-Transistor Logic (TTL) Packages

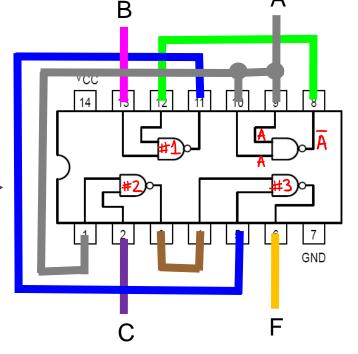


- Diagrams like these and other useful/helpful information can be found on part data sheets
 - It's really useful to learn how to read these

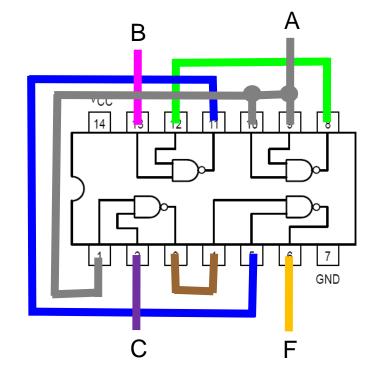
Mapping truth tables to logic gates

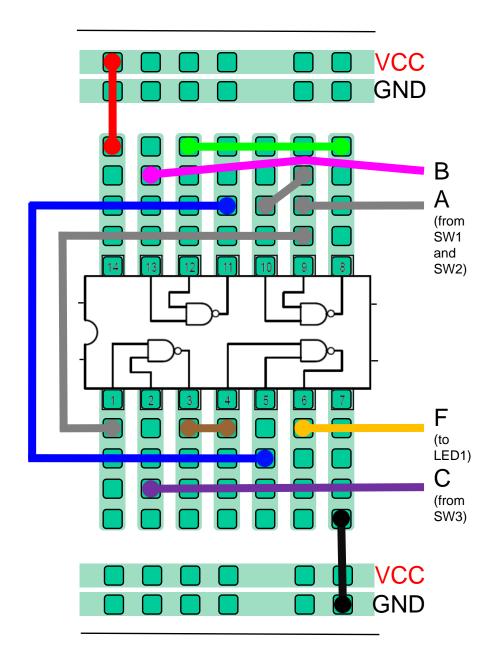
- Given a truth table:
 - 1) Write the Boolean expression
 - 2) Minimize the Boolean expression
 - 3) Draw as gates
 - 4) Map to available gates
 - 5) Determine # of packages and their connections





Breadboarding circuits





Summary

- Digital systems are constructed from Combinational and Sequential Logic
- Logic minimization to create smaller and faster hardware
- Gates come in TTL packages that require careful wiring

