WA/ UNIVERSITY of WASHINGTON

Intro to Digital Design

Instructor: Justin Hsia

Teaching Assistants:
Emilio Alcantara Eujean Lee
Naoto Uemura Pedro Amarante

Wen Li

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Relevant Course Information

+» Lab 3 Demos due during your assigned demo slots

" Don’t forget to submit your lab materials before Wednesday at 2:30 pm, regardless
of your demo time

+ Lab 4 — Extension of Lab 3 using 7-seg displays

+» Quiz 1is next week in lecture
= Last 20 minutes, worth 10% of your course grade
" On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info = Quizzes

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Synchronous Digital Systems (SDS)

+» Combinational Logic (CL)

X, —» —> 7, = Network of logic gates without feedback
X, —» i —> 7 . .
. N;?\i';k ; = Qutputs are functions only of inputs
Xn _> _> Zm
—
@equential Logic (SL)
X, —» > 7, = The presence of feedback introduces the notion of
X, =™ Logic >7, “state”
: N k : . . “« ” . -
. stwor] = Circuits that can “remember” or store information

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Uses for Sequential Logic

+ Place to store values for some amount of time:
" Registers
" Memory I
Jﬂww\b .
+ Help control flow of information between combinational logic blocks

" Hold up the movement of information to allow for orderly passage through CL

WA/ UNIVERSITY of WASHINGTON

Copilot Autopilot Request

Pilot in Charge?

Filot Autopilot Request

L4: Sequential Logic

Control Flow of Information?

+ Circuits can temporarily go to incorrect states!

CAR |1

PIC|t o

PAR [1

b [t

. \Q\I;'O(— i :

- rre u

CSE369, Spring 2024

Autopilot Engaged

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Accumulator Example

+» An example of why we would need to control the flow of information.

Xi /— Accumulator /—> S
« Want: S = @; inhialize”?
for (1 = 0; 1 < n; i++)
Y N~ op condrti
S =S + X;; cop condHionT

Lseﬁluer\ce C;F i“p\xrs
< Assume:

= Each Xvalue is applied in succession, one per cycle
" The sum since cycle O is presenton S

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Accumulator: First Try

+ Does this work? S=S+X
= No 1
X L ¥4y (ivﬂjﬂo\nﬂ)
>+ Fe—S
= s
he&\rl\,
é!:JJ { nstarttine oS

1) How to control the next iteration of the ‘for’ loop?
2) How do we accomplish‘S = 0’?

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

. LN
State Element: Flip-Flop @

ok -
+ Positive edge-triggered D-type flip flop FF | T

® On the rising edge of the clock (o §1_), input d is sampled and transferred to the
output g

= At all other times, the input d is ignored and the previously sampled value is
retained

@
'"t__,

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

State Element: Register

d™> ly\'ut\t,o\d dn - A Ao
- : P4
Reset Reg}s’fe,\’ Lﬂl—’—r = FF FF 4 -« - |FF4
o Rz R
" q/n‘\ C[h;z, 9o

+» mn instances of flip-flops together
" One for every bit in input/output bus width

% Output Q resets to zero when Reset signal is high during clock trigger

= Some extra circuitry required for this

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Accumulator: Second Try

Xb 7 Register holds up the

X transfer of data to adder
1 /
\V\pu‘ D

el Yﬁ&\s‘h&(- LOf\\)/CLK
oot Q

e LT
Delay through Register and Adder —> : i -
2 et |

- ! i
Rough & i_l Il E{oﬂm. wxi'(
diagram A I o I e 1 { I

timing

r’kll

Time
10

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
" Don’t move while camera shutter is opening
" Don’t move while camera shutter is closing
" Check for blurriness once image appears on the display

11

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

" Setup Time: how long the input must be stable before the CLK trigger for proper
input read

" Hold Time: how long the input must be stable after the CLK trigger for proper
input read

" “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

12

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Flip-Flop Timing Behavior
CLK

*—IFF 9

'l’riaaer |
1 |
CAK - - Input date mm be <table.
‘ v\‘\’\\S PQ,\‘\
g e "serup' time
lh()Ld— ™m
Cun.s a ___,; ;< l‘ &Il +\VV\<_,
' Tl

l

- —— ————— ——

‘écz& <« “L\K—'\'o—ﬁl" chaq

Sl e —— — — Cmm— om——

13

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Accumulator: Proper Timing "
=1

X \: (Q)d'f(nal)

reset signal shown
» X; and S;_; arrive at adder at different times

= S, becomes “wrong” temporarily but corrects before “
register captures its value

» Avoid input instability around rising edge of CLK JS =

14

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Review Question

+» Which of the following statements is TRUE?

(A)
LLDACO Se'hif) sil'\o\é\ +ime5
B) A flip-flop switches betweern8-and=1 on each trigger.
() p p ir\puﬁ D— O\A’\'Pbd' Q gg
(C) In a SDS, we only need to know setup time, hold time, and clk-to-q

delay constants to ensure correct behavior. a\% need lCL 0\3&:1;, clbdi periad,
extena inpw im‘lr\j) A

(D) | None of the above.

15

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Model for Synchronous Digital Systems

clock _[1[1 | jnput

input Nregl—e—ep OULPLL

+» Combinational logic blocks separated by registers
" Clock signal connects only to sequential logic elements

= Feedback is optional depending on application

+» How do we ensure proper behavior?

" How fast can we run our clock?

16

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Spring 2024

When Can the Input Change?

+ When a register input changes shouldn’t violate hold time (t;,;4) or
setup time (tsq¢yp) constraints within a clock period (t,eri0q)

v Let tinpye,i be the time it takes for the input of a register to change for
the i-th timein a sm(gle clock cycle measured from the CLK trigger:

" Then we need ty,10 < tinput,i S theriod — Lsetup foralli
= Two separate constraints!

K /)| | ‘.(////l
@ {lhpd'l = Lu < "_—V/ vio ——§§

|
D | /‘. b |7 | Loy
@ ‘éiu\,,ud-’q\ - -Z{Per.“od - tscl'uf %:/I__m {get“r_x/ :@_ P,

17

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Minimum Delay

+ |f shortest path to register input is too short, might violate t;,,;4
constraint
" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

Inputs Outeuts
<§:’;f;°‘/€i§m. Combiletional , o
Lobi ., Min Delay = min(CLK-to-Q Delay
+ V4
Next State Min CL Delay)

*D

Register Min Delay = Hold Time

18

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Maximum Clock Frequency

+» What is the max frequency of this circuit?

" Limited by how much time needed to get correct Next State to Register
(tsetup CONstraint)

Inputs Outeuts
<cm\&pe § s
analss tereal/ | COMbirjational M Delav= |
._(,L,-,c N ax Delay= max(CLK-to-Q Delay
+

|glext State + Max CL Delay)

Register Min Period = Max Delay + Setup Time
Current State Max Freq = 1/Min Period

19

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

The Critical Path

+» The critical path is the longest delay between any two registers in a
circuit

+» The clock period must be longer than this critical path, or the signal will
not propagate properly to that next register

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

3au\<
39y <

20

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

milli 107
: 2 miCro lO.L
Practice Question L 15
‘Qezk-:. 'Dq S—L%periob\-’-l()-“s =Ans = lOOOEs f plee o
+ We want to run on 1 GHz processor. t_,, =100 ps, t_ .= 200 ps,

tsetup = thotg = 20 PS. What is the maximum t we can use?

S

clk-to-q
{kbld é)éiv\(u‘,\}i é_ -érevba\—{sedufiz

—_ Z _
_é"‘l’“f\"v\ = {czQ—L é&M_L ‘ém“""éacm = 'érev;oA -é-\'elur :—?{QQQ SS.OFS
100 100 100 1dVO 50

((A) | (B) 750 ps (C) (D) 700 ps

21

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Technology
Break

22

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Where Do Timing Terms Come From?

Edge-triggered
D flip-flop:

Clocko—

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

https://commons.wikimedia.org/w/index.php?curid=40852354

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Safe Sequential Circuits

+ Clocked elements on feedback, perhaps outputs
" Clock signal synchronizes operation
" Clocked elements hide glitches/hazards

_> Fl
xl _:_' Zl
X2 — Logic H —]Z2
N
Network Ny reﬁi sers
—’

Clock |
Data;)(Compute Valid Compulte X Velid)4 —Compute 4(

. . ! : I
O\<&\/ \‘(’ g\\‘i'd\es L:ﬁ\(lpel\ LQ:'Q 5 ! ise"“? é—‘)‘éh&*

24

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Autopilot Revisited

+ Flip-flops can “filter out” unintended behavior:
A s"aae ' o’F (ompu‘hd AN%Y

cLk|L -I.L -
Q1 CAR
L0,

i - DEF
Copilot Autopilot Request
P P “ Den? } -F @Q = Autopilot Engaged (M)
E
o "F @Q BIC Oenod
Pilot in Charge?==t=pj=n0 }
—b o= PAR
Pilot Autopilot Request =y -0

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Waveform Diagrams Revisited

+ Easiest to start with CLK on top
= Solve signal by signal, from inputs to outputs
" Can only draw the waveform for a signal if all of its input waveforms are drawn

+» When does a signal update?
= A stateC(SeTe)ment updates based on CLK triggers

L
= A combinaﬁgn%l element updates ANY time ANY of its inputs changes

26

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Example: SDS Waveform Diagram

+ Assume: tCZQ =3 tiCkS, tXOR =2 tiCkS, tNOT =1 tl.Ck, tS = th =0

" Note: clocking the gate is a terrible idea

27

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Verilog: Basic D Flip-Flop, Register

module basic D FF (g, d, clk);
output logic q; // g 1s state-holding

input logic d, clk; CLK Q
L — read’ + o Y‘fsiha e()je)
always_ff @(posedge clk) of dk signa D Deno
qsfj/d; // use <= for clocked elements
endmodule

module basic reg (g, d, clk);
output logic [7:0] q;
input 1logic [7:0] d;
input logic clk;
Yus widdhs of §
always ff @(posedge clk)
d;

A<=
endmodule

28

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Procedural Blocks

+~ always: loop to execute over and over again
= Block gets triggered by a sensitivity list

= Any object that is assigned a value in an always statement must be declared as a
variable (logic or reg).

= Example:
- always @ (posedge clk)

+ always_ff: special SystemVerilog for SL
" Only for use with sequential logic — signal intent that you want flip-flops

= Example:
- always_ff @ (posedge clk)

29

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Spring 2024

Blocking vs. Nonblocking

+ Blocking statement (=): statement effects evaluated sequentially
= Resembles programming languages

< Nonblocking statement (<=): statement effects evaluated “in parallel”
= Resembles hardware

& Example: always ff @ (posedge clk) always ff @ (posedge clk)
begin begin
b = a; b <= a;
c = b; C <= b;
end end

e I
OFE
® A[OF—b"| 'DOQ‘C

0 0
C u
CLK|J

0
D Q
1
CLK|uJI

30

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking assignments

2) When modeling combinational logic with an always_comb block, use blocking
assignments

3) When modeling both sequential and combinational logic within the same
always_ff block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always *
block

5) Do not make assignments to the same variable from more than one always_ *
block

31

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Reset Functionality

.)
D Deno
(Reset

+» Option 1: synchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk;

always ff @(posedge clk)
if (reset) <— reset @n only occur on clock trigger

g <= 0; // on reset, set to ©
else
q <= d; // otherwise pass d to g

endmodule

32

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Reset Functionality

. illlii)
D Deno

Reset

+ Option 2: asynchronous reset

module D FF1 (q, d, reset, clk);
output logic q; // g is state-holding 4
input logic d, reset, clk; any recl predge) no mulles
/ nese in The clock cycle

always ff @(posedge clk or posedgg reset)

if (reset)

q <= 0; // on reset, set to ©
else

q <= d; // otherwise pass d to g

endmodule

33

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Verilog: Simulated Clock

+» For simulation, you need to generate a clock signal:
= For entirety of simulation/program, so use always block

Explicit | initial Toggle: | initial
Edges: clk = 0; clk = 0;
always begin always
#50 clk <= 1; #%? clk <= ~clk;
#50 clk <= 0; /-
end “—— | hat-perivd ‘/

+» Define clock period: parameter\(period = 100;)
initial
= Define parameter clk = 0;
| ke Fhefme Macys subsdddidon in C always
#(period/2) clk <= ~clk;

34

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Verilog Testbench with Clock

module D _FF_testbench;
logic CLK, reset, d; < simulated inpsls
logic g; ¢ DUT odput

> parameter PERIOD = 100;

)(o(&\e/(-b\(_FF dut (.q, .d, .reset, .CLK); // Instantiate the D FF
eI
(L, Sinitial CLK <= o; // Set up clock
always #(PERIOD/2) CLK<= ~CLK;

+hese occufj;.d‘ &H‘Cr dock "'h‘gjer;
initial begin T T~/ Set up signals

=0 — d <= 0; reset <= 1;
£ = o] —> @(posedge CLK); reset <= 0;
‘=200 — @(posedge CLK); d <= 1;
<=1 —> @(posedge CLK); d <= 0;
¢~ 40| —> @(posedge CLK); #(PERIOD/4) d <= 1;
~=tod| —> @(posedge CLK);

$stop(); f_¢h stdemeas here// end the simulation
end by cholce

endmodule

35

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Timing Controls

+» Delay: #i<time>
= Delays by a specific amount of simulation time

® Can do calculations in <time>
= Examples: #(PERIOD/4), #50

+ Edge-sensitive: @(<pos/negedge> signal)
" Delays next statement until specified transition on signal
= Example: @(posedge CLK)

+ Level-sensitive Event: wait(<expression>)

= Delays next statement until <kexpression> evaluates to TRUE
= Example: wait(enable == 1)

CSE369, Spring 2024

36

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

ModelSim Waveforms

@Cpusedye clle) PERTOD/U

/D _FF_testbench/clk
/D _FF_testbench/reset

/D _FF testbench/d
/D_FF_testbench/q

initial begin
d <= 0; reset <= 1;
@(posedge CLK); reset <= 0;
@(posedge CLK); d <= 1;
@(posedge CLK); d <= @; L/_\L‘“FPW)W" &' posedye
@(posedge CLK); #(PERIQQ/4) d <= 1;
@(posedge CLK); C et after posedge

$st0p()3 thg 5'*.,(‘3.,,\(,,;\' 0CtnrS e*(aC'H\/ &l ‘obSe()je
end

37

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Spring 2024

Summary (1/2)

+ State elements controlled by clock

= Store information
= Control the flow of information between other state elements and combinational

logic
+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset
+ Critical path constrains clock rate
" Timing constants: setup time, hold time, clk-to-q delay, propagation delays

38

CSE369, Spring 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Summary (2/2)

+» Generating a clock
= Manually create using always block
" Need to decide on period

4

» Blocking vs. Non-blocking

D)

= Blocking: Statements executed “in series”

I”

" Non-blocking: Statements executed “in paralle
= Always use non-blocking for clocked elements

4

+ Synchronous vs. Asynchronous
= Whether signals are controlled by clock or not

39

