
CSE369, Spring 2024L4: Sequential Logic

Intro to Digital Design
Sequential Logic

Instructor: Justin Hsia

Teaching Assistants:

Emilio Alcantara Eujean Lee

Naoto Uemura Pedro Amarante

Wen Li

CSE369, Spring 2024L4: Sequential Logic

Relevant Course Information

❖ Lab 3 Demos due during your assigned demo slots

▪ Don’t forget to submit your lab materials before Wednesday at 2:30 pm, regardless
of your demo time

❖ Lab 4 – Extension of Lab 3 using 7-seg displays

❖ Quiz 1 is next week in lecture

▪ Last 20 minutes, worth 10% of your course grade

▪ On Lectures 1-3: CL, K-maps, Waveforms, and Verilog

▪ Past Quiz 1 (+ solutions) on website: Course Info → Quizzes

2

CSE369, Spring 2024L4: Sequential Logic

❖ Combinational Logic (CL)

▪ Network of logic gates without feedback

▪ Outputs are functions only of inputs

❖ Sequential Logic (SL)

▪ The presence of feedback introduces the notion of
“state”

▪ Circuits that can “remember” or store information

Synchronous Digital Systems (SDS)

3

Logic
Network

X1

X2

⋮

Xn

Z1

Z2

⋮

Zm

Logic
Network

X1

X2

⋮

Xn

Z1

Z2

⋮

Zm

CSE369, Spring 2024L4: Sequential Logic

Uses for Sequential Logic

❖ Place to store values for some amount of time:

▪ Registers

▪ Memory

❖ Help control flow of information between combinational logic blocks

▪ Hold up the movement of information to allow for orderly passage through CL

4

CSE369, Spring 2024L4: Sequential Logic

Control Flow of Information?

❖ Circuits can temporarily go to incorrect states!

5

CSE369, Spring 2024L4: Sequential Logic

❖ An example of why we would need to control the flow of information.

❖ Want: S = 0;
for (i = 0; i < n; i++)

S = S + Xi;

❖ Assume:

▪ Each X value is applied in succession, one per cycle

▪ The sum since cycle 0 is present on S

Accumulator Example

6

AccumulatorXi S

CSE369, Spring 2024L4: Sequential Logic

Accumulator: First Try

❖ Does this work?

▪ No

1) How to control the next iteration of the ‘for’ loop?

2) How do we accomplish ‘S = 0’?

7

X

CSE369, Spring 2024L4: Sequential Logic

State Element: Flip-Flop

❖ Positive edge-triggered D-type flip flop

▪ On the rising edge of the clock (), input d is sampled and transferred to the
output q

▪ At all other times, the input d is ignored and the previously sampled value is
retained

8

CSE369, Spring 2024L4: Sequential Logic

State Element: Register

❖ 𝑛 instances of flip-flops together

▪ One for every bit in input/output bus width

❖ Output Q resets to zero when Reset signal is high during clock trigger

▪ Some extra circuitry required for this

9

Reset

CSE369, Spring 2024L4: Sequential Logic

Rough
timing
diagram

Time

Accumulator: Second Try

10

Register holds up the
transfer of data to adder

Delay through Register and Adder

CSE369, Spring 2024L4: Sequential Logic

Flip-Flop Timing Terminology (1/2)

❖ Camera Analogy: non-blurry digital photo

▪ Don’t move while camera shutter is opening

▪ Don’t move while camera shutter is closing

▪ Check for blurriness once image appears on the display

11

CSE369, Spring 2024L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

❖ Now applied to sequential logic elements:

▪ Setup Time: how long the input must be stable before the CLK trigger for proper
input read

▪ Hold Time: how long the input must be stable after the CLK trigger for proper
input read

▪ “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

12

CSE369, Spring 2024L4: Sequential Logic

Flip-Flop Timing Behavior

13

CSE369, Spring 2024L4: Sequential Logic

Accumulator: Proper Timing

❖ reset signal shown

❖ Xi and Si-1 arrive at adder at different times

▪ Si becomes “wrong” temporarily but corrects before
register captures its value

❖ Avoid input instability around rising edge of CLK

14

CSE369, Spring 2024L4: Sequential Logic

Review Question

❖ Which of the following statements is TRUE?

(A) The input to a flip-flop must remain stable throughout the
CLK-to-Q delay.

(B) A flip-flop switches between 0 and 1 on each trigger.

(C) In a SDS, we only need to know setup time, hold time, and clk-to-q
delay constants to ensure correct behavior.

(D)

15

CSE369, Spring 2024L4: Sequential Logic

Model for Synchronous Digital Systems

❖ Combinational logic blocks separated by registers

▪ Clock signal connects only to sequential logic elements

▪ Feedback is optional depending on application

❖ How do we ensure proper behavior?

▪ How fast can we run our clock?
16

CSE369, Spring 2024L4: Sequential Logic

When Can the Input Change?

❖ When a register input changes shouldn’t violate hold time (𝑡ℎ𝑜𝑙𝑑) or
setup time (𝑡𝑠𝑒𝑡𝑢𝑝) constraints within a clock period (𝑡𝑝𝑒𝑟𝑖𝑜𝑑)

❖ Let 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 be the time it takes for the input of a register to change for

the 𝑖-th time in a single clock cycle, measured from the CLK trigger:

▪ Then we need 𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑠𝑒𝑡𝑢𝑝 for all 𝑖

▪ Two separate constraints!

17

CSE369, Spring 2024L4: Sequential Logic

Minimum Delay

❖ If shortest path to register input is too short, might violate 𝑡ℎ𝑜𝑙𝑑
constraint

▪ Input could change before state is “locked in”

▪ Particularly problematic with asynchronous signals

18

Min Delay = min(

Min Delay ≥ Hold Time

CLK-to-Q Delay
+ Min CL Delay,
Min CL Delay)

CSE369, Spring 2024L4: Sequential Logic

Maximum Clock Frequency

❖ What is the max frequency of this circuit?

▪ Limited by how much time needed to get correct Next State to Register
(𝑡𝑠𝑒𝑡𝑢𝑝 constraint)

19

Max Delay= max(

Min Period = Max Delay + Setup Time
Max Freq = 1/Min Period

CLK-to-Q Delay

+ Max CL Delay,
+ Max CL Delay)

CSE369, Spring 2024L4: Sequential Logic

+R
e

g

R
e

g

The Critical Path

❖ The critical path is the longest delay between any two registers in a
circuit

❖ The clock period must be longer than this critical path, or the signal will
not propagate properly to that next register

20

1

2

3

4

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

CSE369, Spring 2024L4: Sequential Logic

Practice Question

❖ We want to run on 1 GHz processor. tadd = 100 ps, tmult = 200 ps,
tsetup = thold = 50 ps. What is the maximum tclk-to-q we can use?

21

550 ps(A) 750 ps(B) 500 ps(C) (D)

CSE369, Spring 2024L4: Sequential Logic

Technology

Break
22

CSE369, Spring 2024L4: Sequential Logic

Where Do Timing Terms Come From?

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

Edge-triggered
D flip-flop:

https://commons.wikimedia.org/w/index.php?curid=40852354

CSE369, Spring 2024L4: Sequential Logic

Safe Sequential Circuits

❖ Clocked elements on feedback, perhaps outputs

▪ Clock signal synchronizes operation

▪ Clocked elements hide glitches/hazards

24

Clock

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

Clock

Data Valid ComputeCompute Valid Compute

CSE369, Spring 2024L4: Sequential Logic

Autopilot Revisited

❖ Flip-flops can “filter out” unintended behavior:

25

CSE369, Spring 2024L4: Sequential Logic

Waveform Diagrams Revisited

❖ Easiest to start with CLK on top

▪ Solve signal by signal, from inputs to outputs

▪ Can only draw the waveform for a signal if all of its input waveforms are drawn

❖ When does a signal update?

▪ A state element updates based on CLK triggers

▪ A combinational element updates ANY time ANY of its inputs changes

26

CSE369, Spring 2024L4: Sequential Logic

Example: SDS Waveform Diagram

❖ Assume: 𝑡𝐶2𝑄 = 3 ticks, 𝑡𝑋𝑂𝑅 = 2 ticks, 𝑡𝑁𝑂𝑇 = 1 tick; 𝑡𝑠 = 𝑡ℎ = 0

▪ Note: clocking the gate is a terrible idea

27

CSE369, Spring 2024L4: Sequential Logic

Verilog: Basic D Flip-Flop, Register

28

module basic_D_FF (q, d, clk);
output logic q; // q is state-holding
input logic d, clk;

always_ff @(posedge clk)
q <= d; // use <= for clocked elements

endmodule

module basic_reg (q, d, clk);
output logic [7:0] q;
input logic [7:0] d;
input logic clk;

always_ff @(posedge clk)
q <= d;

endmodule

CSE369, Spring 2024L4: Sequential Logic

Procedural Blocks

❖ always: loop to execute over and over again

▪ Block gets triggered by a sensitivity list

▪ Any object that is assigned a value in an always statement must be declared as a
variable (logic or reg).

▪ Example:
• always @ (posedge clk)

❖ always_ff: special SystemVerilog for SL

▪ Only for use with sequential logic – signal intent that you want flip-flops

▪ Example:
• always_ff @ (posedge clk)

29

CSE369, Spring 2024L4: Sequential Logic

Blocking vs. Nonblocking

❖ Blocking statement (=): statement effects evaluated sequentially

▪ Resembles programming languages

❖ Nonblocking statement (<=): statement effects evaluated “in parallel”

▪ Resembles hardware

❖ Example:

30

always_ff @ (posedge clk)
begin

b = a;
c = b;

end

always_ff @ (posedge clk)
begin

b <= a;
c <= b;

end

CSE369, Spring 2024L4: Sequential Logic

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking assignments

2) When modeling combinational logic with an always_comb block, use blocking
assignments

3) When modeling both sequential and combinational logic within the same
always_ff block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_*
block

5) Do not make assignments to the same variable from more than one always_*
block

31

CSE369, Spring 2024L4: Sequential Logic

Verilog: Reset Functionality

❖ Option 1: synchronous reset

32

module D_FF1 (q, d, reset, clk);
output logic q; // q is state-holding
input logic d, reset, clk;

always_ff @(posedge clk)
if (reset)

q <= 0; // on reset, set to 0
else

q <= d; // otherwise pass d to q

endmodule

CSE369, Spring 2024L4: Sequential Logic

Verilog: Reset Functionality

❖ Option 2: asynchronous reset

33

module D_FF1 (q, d, reset, clk);
output logic q; // q is state-holding
input logic d, reset, clk;

always_ff @(posedge clk or posedge reset)
if (reset)

q <= 0; // on reset, set to 0
else

q <= d; // otherwise pass d to q

endmodule

CSE369, Spring 2024L4: Sequential Logic

Verilog: Simulated Clock

❖ For simulation, you need to generate a clock signal:

▪ For entirety of simulation/program, so use always block

❖ Define clock period:

▪ Define parameter

34

Explicit
Edges:

initial
clk = 0;

always begin
#50 clk <= 1;
#50 clk <= 0;

end

initial
clk = 0;

always
#50 clk <= ~clk;

Toggle:

parameter period = 100;
initial

clk = 0;
always

#(period/2) clk <= ~clk;

CSE369, Spring 2024L4: Sequential Logic

Verilog Testbench with Clock

35

module D_FF_testbench;
logic CLK, reset, d;
logic q;

parameter PERIOD = 100;

D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF

initial CLK <= 0; // Set up clock
always #(PERIOD/2) CLK<= ~CLK;

initial begin // Set up signals
d <= 0; reset <= 1;

@(posedge CLK); reset <= 0;
@(posedge CLK); d <= 1;
@(posedge CLK); d <= 0;
@(posedge CLK); #(PERIOD/4) d <= 1;
@(posedge CLK);
$stop(); // end the simulation

end
endmodule

CSE369, Spring 2024L4: Sequential Logic

Timing Controls

❖ Delay: #<time>

▪ Delays by a specific amount of simulation time

▪ Can do calculations in <time>

▪ Examples: #(PERIOD/4), #50

❖ Edge-sensitive: @(<pos/negedge> signal)

▪ Delays next statement until specified transition on signal

▪ Example: @(posedge CLK)

❖ Level-sensitive Event: wait(<expression>)

▪ Delays next statement until <expression> evaluates to TRUE

▪ Example: wait(enable == 1)

36

CSE369, Spring 2024L4: Sequential Logic

ModelSim Waveforms

37

initial begin
d <= 0; reset <= 1;

@(posedge CLK); reset <= 0;
@(posedge CLK); d <= 1;
@(posedge CLK); d <= 0;
@(posedge CLK); #(PERIOD/4) d <= 1;
@(posedge CLK);
$stop();

end

CSE369, Spring 2024L4: Sequential Logic

Summary (1/2)

❖ State elements controlled by clock

▪ Store information

▪ Control the flow of information between other state elements and combinational
logic

❖ Registers implemented from flip-flops

▪ Triggered by CLK, pass input to output, can reset

❖ Critical path constrains clock rate

▪ Timing constants: setup time, hold time, clk-to-q delay, propagation delays

38

CSE369, Spring 2024L4: Sequential Logic

Summary (2/2)

❖ Generating a clock

▪ Manually create using always block

▪ Need to decide on period

❖ Blocking vs. Non-blocking

▪ Blocking: Statements executed “in series”

▪ Non-blocking: Statements executed “in parallel”

▪ Always use non-blocking for clocked elements

❖ Synchronous vs. Asynchronous

▪ Whether signals are controlled by clock or not

39

