Intro to Digital Design FSM Design, MUXes, Adders

Instructor: Justin Hsia

Teaching Assistants:

Emilio Alcantara
Eujean Lee
Naoto Uemura
Pedro Amarante
Wen Li

Relevant Course Information

* Lab 6 - Connecting multiple FSMs in Tug of War game
- Bigger step up in difficulty from Lab 5
- Putting together complex system - interconnections!
- Bonus points for smaller resource usage

Clock Divider (not for simulation)

CLOCK.50: 50 MHz dock on your FPGA

Outline

* FSM Design
* Multiplexors
* Adders

FSM Design Process

1) Understand the problem $\not \subset$
2) Draw the state diagram

311 knowledse
3) Use state diagram to produce state table read off transitions
4) Implement the combinational control logic

$$
\begin{aligned}
& C L+S L \\
& \text { gates + registers }
\end{aligned}
$$

Practice: String Recognizer FSM

(1) Draw the FSM
(2) Truth Table
(3) Simplify Logic
(4) Circuit Diagram

* Recognize the string 101 with the following behavior
- Input: $100101 \overline{101} 10010$
- Output: 0000010100000
* State diagram to implementation:

$$
\text { (2) } \begin{array}{lll|ll}
\text { PS } & \text { In } & \text { NS } & \text { Out } \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & x & x \\
\hline x
\end{array}
$$

(4)

HDL Organization

* Most problems are best solved with multiple pieces - how to best organize your system and code?
* Everything is computed in parallel
- We use routing elements (next lecture) to select between (or ignore) multiple outcomes/parts
- This is why we use block diagrams and waveforms
* A module is not a function, it is closest to a class
- Something that you instantiate, not something that you call - hardware cannot appear and disappear spontaneously
- Should treat modules as resource managers rather than temporary helpers
- This can include having internal modules

Block Diagrams

* Block diagrams are the basic design tool for digital logic.
- The diagram itself is a module \rightarrow inputs and outputs shown and connected
- Major components are represented by blocks ("black boxes") with their internals abstracted away \rightarrow each block becomes its own module
- All ports for each block should be shown and labeled and connected to the appropriate part(s) of the rest of the system \rightarrow sets your port connections
- Wires and other basic building blocks can be added/shown as needed
* From Wikipedia: The goal is to "[end] in block diagrams detailed enough that each individual block can be easily implemented."
- For designs that involve multiple modules, should always create your block diagram before coding anything!

Subdividing FSMs Example

* "Psychic Tester"
- Machine generates a 4-bit pattern

$$
2^{4}=16 \text { patterns }
$$

- User tries to guess 8 patterns in a row to be deemed psychic

$$
\text { 0-7 correct guesses so far (} 8+\Delta t a 1 \text {) }
$$

* States?

$$
\approx 128 \text { states total }
$$

Example: Plan First with Block Diagram

\% Pieces?

- Generate/pick pattern
- User input (guess)
- Check guess
- Count correct guesses

Example: Blocks \rightarrow Modules

* Pieces?
- Generate/pick pattern
- module genPatt (pattern, next, clock);
- User input (guess)
- module userIn (guess, enable, KEY);
- Check guess
- module checkGuess (correct, guess, pattern);
- Count correct guesses
- module countRight (psychic, next, correct, enable, clock);

Example: Implementation \& Testing

1) Create individual submodules
2) Create submodules test benches - test as usual

- CL - run through all input combinations
- SL - take every transition that you care about

3) Create top-level module

- Create instance of each submodule
- Create wires/nets to connect signals between submodules, inputs, and outputs

4) Create top-level test bench

- Goal is to check the interconnections between submodules - does input/state change in one submodule trigger the expected change in other submodules?

Outline

* FSM Design
* Multiplexors
* Adders

Data Multiplexor

* Multiplexor ("MUX") is a selector $s={ }^{\top} \log _{2} N N^{\prime}$
- Direct one of many $\left(\mathrm{N}=2^{s}\right) n$-bit wide inputs onto output
- Called a n-bit, N-to-1 MUX bus widths r possible selections
* Example: n-bit 2-to-1 MUX
- Input S (s bits wide) selects between two inputs of n bits each

Review: Implementing a 1-bit 2-to-1 MUX

* Schematic:

* Truth Table:

\mathbf{s}	\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

* Boolean Algebra:

$$
\begin{aligned}
c & =\bar{s} a \bar{b}+\bar{s} a b+s \bar{a} b+s a b \\
& =\bar{s}(a \bar{b}+a b)+s(\bar{a} b+a b) \\
& =\bar{s}(a(\bar{b}+b))+s((\bar{a}+a) b) \\
& =\bar{s}(a(1)+s((1) b) \\
& =\bar{s} a+s b
\end{aligned}
$$

* Circuit Diagram:

1-bit 4-to-1 MUX

* Schematic: a b cd

* Truth Table: How many rows? 6 inats $\rightarrow 2^{6}$ rows
* Boolean Expression:

$$
e=\overline{s_{1}} \overline{s_{0}} a+\overline{s_{1}} s_{0} b+s_{1} \overline{s_{0}} c+s_{1} s_{0} d
$$

1-bit 4-to-1 MUX

* Can we leverage what we've previously built?
- Alternative hierarchical approach:

Multiplexers in General Logic
 010

* Implement $\mathrm{F}=\stackrel{1}{\mathrm{X}} \overline{\mathrm{Y}} \mathrm{Z}+\stackrel{1}{\mathrm{Z}}+\mathrm{Y} \overline{\mathrm{Z}}$ with a $8: 1 \mathrm{MUX}$

Technology

Break

Outline

* FSM Design
* Multiplexors
* Adders

Review: Unsigned Integers

* Unsigned values follow the standard base 2 system
- $\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}=\mathrm{b}_{7} 2^{7}+\mathrm{b}_{6} 2^{6}+\cdots+\mathrm{b}_{1} 2^{1}+\mathrm{b}_{0} 2^{0}$
* In n bits, represent integers 0 to $2^{n}-1$
* Add and subtract using the normal "carry" and "borrow" rules, just in binary

Review: Two's Complement (Signed)

* Properties:
- In n bits, represent integers -2^{n-1} to $2^{n-1}-1$
- Positive number encodings match unsigned numbers
- Single zero (encoding = all zeros)
* Negation procedure:
- Take the bitwise complement and then add one

$$
(\sim x+1==-x)
$$

Addition and Subtraction in Hardware

* The same bit manipulations work for both unsigned and two's complement numbers!
- Perform subtraction via adding the negated $2^{\text {nd }}$ operand:

$$
A-B=A+(-B)=A+(\sim B)+1
$$

* 4-bit examples:

Two's Un
Two's Un

0010	+2	2	1000	-8	8
+1100	-4	12	+0100	+4	4
110	-2	14	1100	-4	12
¢ 1110	+6	6	1111	-1	15
-0010	+2	2	-1110	-2	14
1101			+0001		
0100	$+4$	4	0001	+	1

Half Adder (1 bit)

Full Adder (1 bit)

$$
\begin{aligned}
\boldsymbol{s}_{\boldsymbol{i}} & =\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right) \\
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}} & =\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right) \\
& =a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

Carry-in

Multi-Bit Adder (N bits)

* Chain 1-bit adders by connecting CarryOut ${ }_{i}$ to Carryln ${ }_{i+1}$:

Subtraction?

* Can we use our multi-bit adder to do subtraction?
- Flip the bits and add 1?
- $\mathrm{X} \oplus 1=\overline{\mathrm{X}}$
- Carry ln ${ }_{0}$ (using full adder in all positions)

$$
\begin{aligned}
& x \& 0=0 \\
& x \& 1=x \\
& x \mid 0=x \\
& x \mid 1=1 \\
& x \hat{0}=x \\
& x \hat{x}=\bar{x}
\end{aligned}
$$

Multi-bit Adder/Subtractor

Detecting Arithmetic Overflow

* Overflow: When a calculation produces a result that can't be represented in the current encoding scheme
- Integer range limited by fixed width
- Can occur in both the positive and negative directions
* Unsigned Overflow
- Result of add/sub is > UMax or < Umin
0b11... 1 0b00... 0
* Signed Overflow
- Result of add/sub is > TMax or $<$ TMin
- $(+)+(+)=(-)$ or $(-)+(-)=(+)$

Signed Overflow Examples

Multi-bit Adder/Subtractor with Overflow

Arithmetic and Logic Unit (ALU)

* Processors contain a special logic block called the "Arithmetic and Logic Unit" (ALU)
- Here's an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit numbers)
* Schematic:

$$
\text { when } S=00, R=A+B
$$

$$
\text { when } S=01, R=A-B
$$

$$
\text { when } S=10, R=A \& B
$$

$$
\text { when } S=11, R=A \mid B
$$

Simple ALU Schematic

1-bit Adders in Verilog

* What's wrong with this?
- Truncation!

```
module halfadd1 (s, a, b);
    output logic s;
    input logic a, b;
    single bit
    always_comb begin
        >}=\textrm{a}+\textrm{b}
    end
endmodule
```

* Fixed:
- Use of $\{$ sig, ..., sig\} for concatenation

Ripple-Carry Adder in Verilog

```
module fulladd (cout, s, cin, a, b);
    output logic cout, s;
    input logic cin, a, b;
    always_comb begin
        {cout, s} = cin + a + b;
    end
endmodule
```

* Chain full adders?

```
module add2 (cout, s, cin, a, b);
    output logic cout; output logic [1:0] s;
    input logic cin; input logic [1:0] a, b;
    logic c1;
    fulladd b1 (cout, s[1], c1, a[1], b[1]);
    fulladd b0 (c1, s[0], cin, a[0], b[0]);
endmodule
```


Add/Sub in Verilog (parameterized)

* Variable-width add/sub (with ovedeffllow, value carry)

- Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

Add/Sub in Verilog (parameterized)

```
module addN_tb (); 
```

