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369 SystemVerilog Tutorial 
Scott Hauck, Justin Hsia, Max Arnold, Matthew Cinnamon (last updated Oct. 2020) 

Introduction 

The following tutorial is intended to get you going quickly in circuit design in SystemVerilog. It is not a 

comprehensive guide but should contain everything you need to design circuits in this class.  For a more 

thorough reference, Prof. Hauck recommends Vahid and Lysecky’s Verilog for Digital Design. 
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Modules 

The basic building block of Verilog is a module. This is similar to a function or procedure in C/C++/Java in that it 

takes input values, performs a computation, and generates outputs. However, modules compile into collections 

of logic gates and each time you “call” a module you are creating separate instances of hardware. 

 

Simple Module Example 

Shown below is an example of a SystemVerilog module (left) and its corresponding hardware instantiation 

(right):  

 

 

 

Line-by-Line Analysis 

Lines 1-2 are single-line comments, designated by the ‘ ’ (green syntax highlighting in Quartus) and ignored 

during compilation. Comments can be placed at the end of lines of code or on separate lines by themselves. 

Lines 3-5 define the module name and port list, which is the list of inputs and outputs signals.  Line 3 gives the 

port names while lines 4-5 define the port types and directions. Here, all 4 port signals are of type , 

 and  are outputs, and  and  are inputs. The name ( ) is user-defined but must start with 

a letter and can only consist of letters, numbers, and underscores. Avoid using keywords (  syntax 

highlighting in Quartus) as names. 

Line 7-8 each instantiate a gate following the standard module instantiation syntax of:  

 

Line 7 creates an AND gate called  and Line 8 creates an OR gate called . The port lists 

are explained below in the section  

Basic Gates. 

The  keyword on line 9 closes the module definition started with the  keyword on line 3.  

 

ANSI-style Module Headers 

SystemVerilog allows for “ANSI-style” module headers, which allows you to define the port types and directions 

within the port list. This can save a lot of space when working with large module headers because the port 
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names are not repeated. The following example is equivalent to the previous module: 

 

 

Basic Gates 

Verilog comes with a number of predefined modules for basic gates that follow the standard module 

instantiation syntax of:  

 

The port lists for these gates are defined such that the first connection is always the output.  The following 

examples show a one-input gate and a multi-input gate: 

The other 1-input gate is  and the other multi-input gates are , , , , and . 

If you want to have more than two inputs to a multi-input gate, simply add more connections to the port list. For 

example, the following is a five-input AND gate: 

 

Hierarchy 

Just like we build up a complex software program by having procedures call subprocedures, Verilog builds up 

complex circuits from modules that instantiate submodules. For example, we can take our previous  

module and use it to build a  module: 
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Notice that we now instantiate the  module just like the standard Verilog gates. We also happen to have 

multiple NOT gates in this module. You can instantiate the same type of module (basic or user-defined) more 

than once as long as the instance names are different (here,  and  for the  gates). 

Local Signals 

Line 7 creates local signals  and , which are essentially local variables in the  module. In 

this case, these are wires that carry the signals from the output of the  gate to the inverters. 

Structural Verilog and Code Ordering 

The creation/instantiation of signals and modules as seen so far is considered structural Verilog: the code only 

describes the connections between different pieces of hardware.  None of this code has any notion of 

sequencing or timing—all pieces of hardware will execute in parallel—so the statement order does not matter. 

Thus, we could freely swap the ordering of lines 9-11. 

Port Connections 

Like C/C++/Java arguments and parameters, Verilog will, by default, connect the ports in order of the port list of 

the module definition when you instantiate a module. However, we can also explicitly name the ports in Verilog. 

That is, when we use  in the port list, we are connecting the  wire in the  

module to the  input port of the  module instance. This explicit connection tends to avoid 

mistakes, especially when someone adds or deletes ports in a module definition. 

Note that every signal name in a module must be distinct. However, the same name can be used in different 

modules independently. You can connect a module signal to a submodule port of the same name using an 

implicit connection. For example, if we had renamed the  and  input ports as  and , then: 

could be equivalently written as: 

While the  and  ports are still explicitly connected, the  and  ports will be implicitly connected 

to the  and  signals of the  module (which just happen to also be input ports). 
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There is another style of implicit connection which will implicitly connect as many ports as it can ( ). This saves 

a lot of space when connecting many signals. The following is again equivalent to the two examples above. 

Boolean Equations and “Assign” 

You can also write out Boolean equations in Verilog within a continuous assignment statement ( ), which 

sets the value of a variable to the result of a Boolean expression. The Boolean expressions can be constructed 

using the bitwise operators NOT ( ), OR ( ), AND ( ), and XOR ( ). An example: 

Note that the value of  will automatically update (though it may not change) after any of its inputs ( , , , ) 

change.   should not be assigned anywhere else in its module or there will be a conflict. 

True and False 

Sometimes you want to force a single-bit value to true/high or false/low. We can do that with the constants 

 = false, and  = true. For example, if we wanted to compute the  of false and some signal , we 

could do the following: 

Multi-bit Signals 

So far, we have created/declared single-bit signals (i.e., they can only have the value  or ) using  

statements. However, Verilog also supports multi-bit signals. The following multi-bit declaration example 

creates a 3-bit variable named : 

This syntax, called a packed array, creates a set of individual signals that can also be treated as a group/bus. The 

numbers inside the brackets ( ) define the signal indices  with  being the most-significant bit (  in this 

case) and  being the least significant bit ( ). By convention, for an 𝑛-bit signal we use 𝑛-1 as  and  as . 

The individual signals can be used just like any other single-bit signal in Verilog. For example: 

This computes  AND the right-most bit of  and ties the result to the left-most bit of . Multi-bit signals can also 

be passed as a group to a module through multi-bit ports: 

Note that the bus widths of multi-bit ports and connected signals must match. 
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Multi-bit Signal Declaration Issue 

Be aware that all signals declared in the same statement take on the same properties.  A common error with 

signal declarations looks something like: 

What this line does is declare all three signals as 32-bit variables, whereas  and  are generally one-bit 

signals. You may be tipped off to this error if you see a compiler warning about signal or port size mismatches. 

What you actually want is: 

Array Slices 

Sometimes you want to work with a subsection of a multi-bit value, called a slice. We can create a slice by 

specifying the start and end indices of the slice separated by a colon. For example, the following code sets 

 and  to  and  to , leaving all other bits unchanged: 

A common use case for slices is breaking apart large packed arrays to pass to submodules. For example, a single 

byte can be represented as two hex digits. If we have a module named  which converts a 4-bit 

value to the segments of a 7-segment display, the following code displays the hex code for a byte: 

Multi-bit Literals 

You can assign a value to a multi-bit signal using a multi-bit literal. The general format contains 5 parts in the 

following order, most of which can be omitted and will assume a default value:  

1) the width of the literal in bits (default: 32) 

2) a single quote ( ) 

3) an ‘ ’ character if the number is signed (default: unsigned) 

4) the radix indicator (‘ ’ for binary, ‘ ’ for octal, ‘ ’ for decimal, or ‘ ’ for hex; default: decimal) 

5) the value expressed in the specified radix 

For example, the following statements produce equivalent behavior for a 16-bit signal : 

On line 1, the value will be automatically truncated to 16 bits by the compiler (you will get a warning for this).  
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On line 3, the literal is specified as a signed constant, but has the same binary representation as its unsigned 

equivalent.   

Unspecified bits default to  (i.e., can be treated as leading zeros). So, the following is equivalent to Line 3: 

Concatenations 

You can concatenate multiple signals together into a new grouping by separating them with commas inside curly 

braces ( ). For example, if we have two 8-bit signals called  and , then  creates a 16-bit signal. 

Note that the ordering of bits of the new grouping is determined by the ordering of the signals within the 

braces. 

All types of signals can be used in a concatenation – constants, subsets, buses, single wires, expressions, etc. For 
example, the following is a concatenation of a constant with a multi-bit signal: 

Bit Replication 

Sometimes you would like to replicate a bit or set of bits multiple times. The syntax uses two sets of nested curly 

braces with the value to be replicated on the inside and a constant for the number of replications between the 

opening braces. The following example replicates the 4-bit signal  three times: 

Like all other signal expressions, the replication operator can be used inside of a concatenation and vice versa. 

Delays 

Normally, Verilog statements are assumed to execute instantaneously. However, Verilog does support some 

notion of execution delay for basic gates via the # operator (simulation only!!!). For example: 

This says that the AND gate takes 5 arbitrary time units to compute, while the OR gate takes 10 units. Note that 

the units of time can be whatever you want as long as you are consistent relative to other delays. This can be 

handy when testing and simulating designs to mimic combination delays through actual gates in the real world. 
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Defining Named Constants 

Sometimes you want to have named constants – values you associate with a meaningful name that you can 

reuse throughout a piece of code. For example, you could set the same delay for all units in a module: 

This sets the delay of both gates to the value of , which in this case is 5 time units. If we wanted to speed 

up both gates, we would only have to reduce the constant in the parameter line. 

You may also see parameters used to define names for states in a state machine. However, this particular use 

case can be accomplished via an , which is detailed later. 

Parameterized Design 

Parameters can also be inputs to designs, allowing the caller of the module to set the size of features of that 

specific instance of the module. So, if we have a module such as: 

This defines a parameter  with a default value of 5. Any instantiation of the adder module that does not 

specify a width will have all of the internal variable widths set to 5. However, we can also instantiate other 

widths as well: 

Note that this allows us to instantiate modules of varying size from a single Verilog definition, similar to 

templates in C++. You cannot instantiate “on the fly” so parameter values must be known at compile time. 

Enumerations 

For FSMs and the like, we want to have variables that can take on one of multiple named values – while we 

could just use numbers, names are generally clearer. Sometimes we may use  statements to set up 

names for variables, but for FSM state variables enumerations work better. For example, the following code 

defines the allowable states for a hypothetical FSM: 
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This defines two variables,  and , and restricts their values to be either , , or . We can test 

the value of variables and assign new values using those names: 

The compiler will automatically assign values to each of these variables or you can also specify one or more 

specific values: 

Make sure to have one of the values be equal to , but the other values can be whatever you want. One last tip: 

if you want to print the value of an enum variable , you can call  to return the string for that value 

(e.g., if the current value of  is ,  will return “ ”). 

Register Transfer Level (RTL) Code – Behavioral Verilog 

In the earlier sections, we showed ways to create structural designs, where we tell the system exactly how to 

arrange the design. In RTL (i.e., behavioral) code, we instead state only the behavior we want and allow the 

Verilog compiler to determine the actual circuit layout. 

 

RTL code is divided into two types, combinational logic and sequential logic. In each of these cases, RTL code is 

written in  block variants, which allow for the use of powerful constructs like -  -  and 

 statements. This helps greatly when creating large and complex designs. 

Begin-end 

 and  statements denote a block of code, much like the “ ” braces in C and Java, and group multiple 

statements together in determining computation “flow.” These can be used with procedural blocks (e.g., 

, ) and conditional statements (e.g., -  - , ). Like C, you do not have to use 

them for single statements, but they generally help to create more readable and maintainable code.  

Combinational Logic 

The output of combinational logic is determined purely based on the current value of the inputs. Simple 

computations can be written as  statements, but complex designs generally go in  blocks, 

which will execute/trigger whenever any of the input signals change.  

In behavioral code, it is easy to forget how the hardware actually works and pretend that it is just C or 

Java (i.e., software). This is a great way to design AWFUL hardware. Because of this, we will give you 

stylized ways of using the constructs which will guide you towards better designs – think about the 

hardware that your system actually requires! 
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Sequential Logic 

Sequential logic only updates its output when a specific event, typically a clock trigger, occurs. This allows the 

design to hold/store state information and behave differently based on previous inputs. The event (i.e., 

expression that evaluates to true) is specified after the  keyword and usually triggers from low to 

high, , or high to low, . For example, the following block triggers on a rising edge of : 

Blocking (=) and Non-blocking (<=) Assignment  

Verilog includes two subtly different types of ways to assign values to variables, blocking ( ) and non-blocking 

( ): 

• A blocking assignment takes effect before subsequent statements in the same block, which will see 

the new value. So,  will set both  and  to the value of . 

• A non-blocking assignment occurs simultaneously (i.e., in parallel) with all others.  So, 

 will swap the values of  and . Similarly,  will set  to the value of , 

and  to the original/old value of . 

The two kinds of assignment can be confusing and mixing them in one  block is a recipe for disaster. The 

following rules are an effective “rules of thumb” to avoid any issues: 

1. Use  for everything inside  blocks (except the iteration variable in a  loop). 

2. Use  for everything inside  statements and  blocks. 

3. Avoid complex logic in  blocks. Instead, compute complex logic in  blocks, 

assign the results to internal signals, and then use simple statements like “ ” in the 

 blocks. 

If-else if-else 

The -  -  constructs look similar to software, but with the important distinction that each signal 

must be defined in all cases. This is because the statement is equivalent to defining a logic function.  is true 

only when  = , or when  =  and  = . This is equivalent to the function  =  + . Similarly,  = .  
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Failing to define a signal in all cases will result in one of two outcomes: 

1) If the conditional block is inside an  block, it will fail with the message: 

always_comb construct does not infer purely combinational logic. 

2) If not in an  block, the code may compile with the warning: 

inferring latch(es) for variable "var", which holds its previous value in one or more paths through the 

always construct. 

Although it may compile successfully, the design will likely exhibit unexpected behavior that is not intended to 

be used in this class and therefore should be avoided. 

Case 

As we move to multi-bit signals that can take on values more than just  and , the  statement becomes 

quite useful. The variable to be considered is placed in the parenthesis of the  statement, and then 

different values are listed with the associated action. For example in the code below,  is set to  when the 

 variable is  or  and is set to  if  is , , or . There must also always be a  case to catch 

values that don’t match any other case. Any variable set in any part of the  statement should be set in all 

cases. That is, dropping the  assignment from any of the cases would be incorrect. Here, we also use the 

value to indicate that we do not care if the value is  or , allowing the compiler to optimize the design.  

Repeat 

A  loop is a simple statement that repeats a block of code a specified number of times. If you don’t need 

to use the value of the loop variable, this is a much simpler syntax than writing out a -loop. For example, the 

following code adds  to  ten times with an 8 arbitrary time unit delay between each addition.  

For-Loops 

A -loop in SystemVerilog is a much more limited structure compared to other programming languages. It 

should only be used as a way of simplifying repetitive statements, not as a way of performing any form of logic. 

A good rule to follow is:   
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The main scenario where -loops are useful in SystemVerilog is working with multi-bit signals. Sometimes 

array slices are insufficient, for example if you want to assign bits in reverse order: 

-loops can also be useful in test benches, as they often involve repetitive inputs which can be simplified. 

Test Benches 

Once a circuit is designed, you need some way to test it. For example, we would like to see how the  

circuit we designed earlier behaves. To do this, we create a test bench. A test bench is a module that calls your 

original module, often called the Device Under Test or DUT, with the desired input patterns and collects the 

results. For example, consider the following setup: 

 

If you cannot manually expand a -loop in your code, do not use it! 
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The new section of code in this example is the module . It instantiates one copy of the 

 module, called , and connects input signals that we control and output signals that we can read. 

In order to provide test data to the device under test, we create a stimulus block (lines 25-30). The code inside 

the  statement is executed once at the beginning of the simulation. It sets  and  to  immediately 

and then waits 10 arbitrary time units, keeping  and  at the assigned values. It then set  to , keeping  

unchanged, and again waits 10 time units. If we consider the entire block, the inputs  go through the bit 

patterns  →  →  → , which tests all possible input combinations for this circuit. Other 

orderings are possible and valid as long as they contain all desired input combinations. For example: 

A -loop can be used to simplify sweeping through inputs. The following code is identical in function to the 

previous example. 

We use the fact that integers are encoded in binary and therefore can be assigned to other variables. This code 

easily scales to an arbitrary number of signals of total width  – the only changes required are to replace the 

upper limit (i.e., ) with 2  (written as  in Verilog) and to change the concatenation to include all the input 

signals being tested. 
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Testbench Clock Simulator 

A sequential circuit will need a clock. We can make a test bench simulate this with the following code: 

Many other code variants exist that can produce a valid simulated clock signal. The simulated clock would be put 

into the testbench for your system and all sequential modules would take  as an input. 

Waiting for a Signal 

So far, testbench examples have used  to delay instructions, but it is also possible to wait for a signal 

to change instead of waiting a specific amount of time. This can be useful for debugging modules which take 

multiple cycles to finish working. The syntax to wait for a signal to change is  or 

, similar to the sensitivity list for an  block. For example, the following stimulus 

block waits for the  signal to go high before changing the simulated inputs. 

Printing Values to the Console 

Most development will use simulated waveforms to examine the state of signals over time. However, 

sometimes in debugging it is useful to print messages as well (e.g., any time an error condition is found, print a 

message about the error and the values of relevant variables). The  command is one way to do this:  

 takes an arbitrary number of arguments which are concatenated and printed to the console.  

is a special function which returns the simulated time when it is called. The empty value between the  call 

and the string simply adds extra space to make the output more readable.  

 prints once at the time specified. If you would prefer constant monitoring, use : 
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 prints once at the time specified and then any time afterward when any of the signals being 

monitored changes. 

Advanced Features – Multi-Dimensional Buses 

Sometimes it can be useful to have signals with more than one dimension – for example, we might want to hold 

sixteen 8-bit values. Verilog allows you to define multiple sets of indices (i.e., multiple packed dimensions): 

To access a multi-dimensional packed variable, successive indices refer to the packed dimensions from left-to-

right. For example, the following code sets all the bits of a 3-dimensional bus to : 

Unpacked Arrays 

It is also possible to declare an array with the size after the variable name. This is called an unpacked array, 

because successive elements of an unpacked dimension cannot be treated as one unit. A packed array of 8 bits 

can be used as a byte, but an unpacked array of 8 bits can only be accessed one bit at a time: 

A mismatched array type and will give an error message about the unpacked array type, often something like: 

“unpacked array type cannot be assigned to integer vector type - types do not match” 

It is possible to have a variable with both packed and unpacked dimensions. In this case, the unpacked 

dimensions are access first from left-to-right, followed by the packed dimensions from left-to-right. 
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Advanced Features – Assert Statements 

As you design larger systems, you will often have assumptions you would like to verify are true. For example, 

you may have a parameterized module with a limited number of legal parameter values. Or, you may have a 

module that assumes the inputs obey certain requirements. You could check this via simulation, but as the 

design gets larger you are more and more likely to miss things. 

The solution to this is the  statement. During simulation, it will raise an error whenever the value inside 

the assertion is false. So, if we have a parameter with only a few legal values, we can test it with an assertion 

inside the module: 

If we require that at least one input to a unit must always be true, we can test it with an always-running 

assertion: 

Advanced Features – Generate Statements 

Earlier in this tutorial the  and  constructs were introduced in the context of RTL code, which dealt with 

changing the values of existing signals. In order to put submodule calls and other logic within -loops and -

statements, the  statement must be used. It begins with  and ends with . All 

structures to be generated, including modules,  blocks,  blocks, and  

statements, should be placed inside all  and  statements. 

Any -loops or -statements must have a  block followed by a colon and a name, called the label. 

Each construct generated will be identifiable by this label. These names can help when inspecting error 

messages and will also appear when examining signals in ModelSim. The following example module creates a 

number of  submodules based on the parameter . 

 


