
1

369 SystemVerilog Tutorial
Scott Hauck, Justin Hsia, Max Arnold, Matthew Cinnamon (last updated Oct. 2020)

Introduction

The following tutorial is intended to get you going quickly in circuit design in SystemVerilog. It is not a

comprehensive guide but should contain everything you need to design circuits in this class. For a more

thorough reference, Prof. Hauck recommends Vahid and Lysecky’s Verilog for Digital Design.

Table of Contents

Modules ... 2

Basic Gates... 3

Hierarchy ... 3

Boolean Equations and “Assign” ... 5

Multi-bit Signals ... 5

Delays .. 7

Defining Named Constants .. 8

Parameterized Design ... 8

Enumerations .. 8

Register Transfer Level (RTL) Code – Behavioral Verilog .. 9

Test Benches .. 12

Printing Values to the Console .. 14

Advanced Features – Multi-Dimensional Buses .. 15

Advanced Features – Assert Statements ... 16

Advanced Features – Generate Statements .. 16

2

Modules

The basic building block of Verilog is a module. This is similar to a function or procedure in C/C++/Java in that it

takes input values, performs a computation, and generates outputs. However, modules compile into collections

of logic gates and each time you “call” a module you are creating separate instances of hardware.

Simple Module Example

Shown below is an example of a SystemVerilog module (left) and its corresponding hardware instantiation

(right):

Line-by-Line Analysis

Lines 1-2 are single-line comments, designated by the ‘ ’ (green syntax highlighting in Quartus) and ignored

during compilation. Comments can be placed at the end of lines of code or on separate lines by themselves.

Lines 3-5 define the module name and port list, which is the list of inputs and outputs signals. Line 3 gives the

port names while lines 4-5 define the port types and directions. Here, all 4 port signals are of type ,

 and are outputs, and and are inputs. The name () is user-defined but must start with

a letter and can only consist of letters, numbers, and underscores. Avoid using keywords (syntax

highlighting in Quartus) as names.

Line 7-8 each instantiate a gate following the standard module instantiation syntax of:

Line 7 creates an AND gate called and Line 8 creates an OR gate called . The port lists

are explained below in the section

Basic Gates.

The keyword on line 9 closes the module definition started with the keyword on line 3.

ANSI-style Module Headers

SystemVerilog allows for “ANSI-style” module headers, which allows you to define the port types and directions

within the port list. This can save a lot of space when working with large module headers because the port

3

names are not repeated. The following example is equivalent to the previous module:

Basic Gates

Verilog comes with a number of predefined modules for basic gates that follow the standard module

instantiation syntax of:

The port lists for these gates are defined such that the first connection is always the output. The following

examples show a one-input gate and a multi-input gate:

The other 1-input gate is and the other multi-input gates are , , , , and .

If you want to have more than two inputs to a multi-input gate, simply add more connections to the port list. For

example, the following is a five-input AND gate:

Hierarchy

Just like we build up a complex software program by having procedures call subprocedures, Verilog builds up

complex circuits from modules that instantiate submodules. For example, we can take our previous

module and use it to build a module:

4

Notice that we now instantiate the module just like the standard Verilog gates. We also happen to have

multiple NOT gates in this module. You can instantiate the same type of module (basic or user-defined) more

than once as long as the instance names are different (here, and for the gates).

Local Signals

Line 7 creates local signals and , which are essentially local variables in the module. In

this case, these are wires that carry the signals from the output of the gate to the inverters.

Structural Verilog and Code Ordering

The creation/instantiation of signals and modules as seen so far is considered structural Verilog: the code only

describes the connections between different pieces of hardware. None of this code has any notion of

sequencing or timing—all pieces of hardware will execute in parallel—so the statement order does not matter.

Thus, we could freely swap the ordering of lines 9-11.

Port Connections

Like C/C++/Java arguments and parameters, Verilog will, by default, connect the ports in order of the port list of

the module definition when you instantiate a module. However, we can also explicitly name the ports in Verilog.

That is, when we use in the port list, we are connecting the wire in the

module to the input port of the module instance. This explicit connection tends to avoid

mistakes, especially when someone adds or deletes ports in a module definition.

Note that every signal name in a module must be distinct. However, the same name can be used in different

modules independently. You can connect a module signal to a submodule port of the same name using an

implicit connection. For example, if we had renamed the and input ports as and , then:

could be equivalently written as:

While the and ports are still explicitly connected, the and ports will be implicitly connected

to the and signals of the module (which just happen to also be input ports).

5

There is another style of implicit connection which will implicitly connect as many ports as it can (). This saves

a lot of space when connecting many signals. The following is again equivalent to the two examples above.

Boolean Equations and “Assign”

You can also write out Boolean equations in Verilog within a continuous assignment statement (), which

sets the value of a variable to the result of a Boolean expression. The Boolean expressions can be constructed

using the bitwise operators NOT (), OR (), AND (), and XOR (). An example:

Note that the value of will automatically update (though it may not change) after any of its inputs (, , ,)

change. should not be assigned anywhere else in its module or there will be a conflict.

True and False

Sometimes you want to force a single-bit value to true/high or false/low. We can do that with the constants

 = false, and = true. For example, if we wanted to compute the of false and some signal , we

could do the following:

Multi-bit Signals

So far, we have created/declared single-bit signals (i.e., they can only have the value or) using

statements. However, Verilog also supports multi-bit signals. The following multi-bit declaration example

creates a 3-bit variable named :

This syntax, called a packed array, creates a set of individual signals that can also be treated as a group/bus. The

numbers inside the brackets () define the signal indices with being the most-significant bit (in this

case) and being the least significant bit (). By convention, for an 𝑛-bit signal we use 𝑛-1 as and as .

The individual signals can be used just like any other single-bit signal in Verilog. For example:

This computes AND the right-most bit of and ties the result to the left-most bit of . Multi-bit signals can also

be passed as a group to a module through multi-bit ports:

Note that the bus widths of multi-bit ports and connected signals must match.

6

Multi-bit Signal Declaration Issue

Be aware that all signals declared in the same statement take on the same properties. A common error with

signal declarations looks something like:

What this line does is declare all three signals as 32-bit variables, whereas and are generally one-bit

signals. You may be tipped off to this error if you see a compiler warning about signal or port size mismatches.

What you actually want is:

Array Slices

Sometimes you want to work with a subsection of a multi-bit value, called a slice. We can create a slice by

specifying the start and end indices of the slice separated by a colon. For example, the following code sets

 and to and to , leaving all other bits unchanged:

A common use case for slices is breaking apart large packed arrays to pass to submodules. For example, a single

byte can be represented as two hex digits. If we have a module named which converts a 4-bit

value to the segments of a 7-segment display, the following code displays the hex code for a byte:

Multi-bit Literals

You can assign a value to a multi-bit signal using a multi-bit literal. The general format contains 5 parts in the

following order, most of which can be omitted and will assume a default value:

1) the width of the literal in bits (default: 32)

2) a single quote ()

3) an ‘ ’ character if the number is signed (default: unsigned)

4) the radix indicator (‘ ’ for binary, ‘ ’ for octal, ‘ ’ for decimal, or ‘ ’ for hex; default: decimal)

5) the value expressed in the specified radix

For example, the following statements produce equivalent behavior for a 16-bit signal :

On line 1, the value will be automatically truncated to 16 bits by the compiler (you will get a warning for this).

7

On line 3, the literal is specified as a signed constant, but has the same binary representation as its unsigned

equivalent.

Unspecified bits default to (i.e., can be treated as leading zeros). So, the following is equivalent to Line 3:

Concatenations

You can concatenate multiple signals together into a new grouping by separating them with commas inside curly

braces (). For example, if we have two 8-bit signals called and , then creates a 16-bit signal.

Note that the ordering of bits of the new grouping is determined by the ordering of the signals within the

braces.

All types of signals can be used in a concatenation – constants, subsets, buses, single wires, expressions, etc. For
example, the following is a concatenation of a constant with a multi-bit signal:

Bit Replication

Sometimes you would like to replicate a bit or set of bits multiple times. The syntax uses two sets of nested curly

braces with the value to be replicated on the inside and a constant for the number of replications between the

opening braces. The following example replicates the 4-bit signal three times:

Like all other signal expressions, the replication operator can be used inside of a concatenation and vice versa.

Delays

Normally, Verilog statements are assumed to execute instantaneously. However, Verilog does support some

notion of execution delay for basic gates via the # operator (simulation only!!!). For example:

This says that the AND gate takes 5 arbitrary time units to compute, while the OR gate takes 10 units. Note that

the units of time can be whatever you want as long as you are consistent relative to other delays. This can be

handy when testing and simulating designs to mimic combination delays through actual gates in the real world.

8

Defining Named Constants

Sometimes you want to have named constants – values you associate with a meaningful name that you can

reuse throughout a piece of code. For example, you could set the same delay for all units in a module:

This sets the delay of both gates to the value of , which in this case is 5 time units. If we wanted to speed

up both gates, we would only have to reduce the constant in the parameter line.

You may also see parameters used to define names for states in a state machine. However, this particular use

case can be accomplished via an , which is detailed later.

Parameterized Design

Parameters can also be inputs to designs, allowing the caller of the module to set the size of features of that

specific instance of the module. So, if we have a module such as:

This defines a parameter with a default value of 5. Any instantiation of the adder module that does not

specify a width will have all of the internal variable widths set to 5. However, we can also instantiate other

widths as well:

Note that this allows us to instantiate modules of varying size from a single Verilog definition, similar to

templates in C++. You cannot instantiate “on the fly” so parameter values must be known at compile time.

Enumerations

For FSMs and the like, we want to have variables that can take on one of multiple named values – while we

could just use numbers, names are generally clearer. Sometimes we may use statements to set up

names for variables, but for FSM state variables enumerations work better. For example, the following code

defines the allowable states for a hypothetical FSM:

9

This defines two variables, and , and restricts their values to be either , , or . We can test

the value of variables and assign new values using those names:

The compiler will automatically assign values to each of these variables or you can also specify one or more

specific values:

Make sure to have one of the values be equal to , but the other values can be whatever you want. One last tip:

if you want to print the value of an enum variable , you can call to return the string for that value

(e.g., if the current value of is , will return “ ”).

Register Transfer Level (RTL) Code – Behavioral Verilog

In the earlier sections, we showed ways to create structural designs, where we tell the system exactly how to

arrange the design. In RTL (i.e., behavioral) code, we instead state only the behavior we want and allow the

Verilog compiler to determine the actual circuit layout.

RTL code is divided into two types, combinational logic and sequential logic. In each of these cases, RTL code is

written in block variants, which allow for the use of powerful constructs like - - and

 statements. This helps greatly when creating large and complex designs.

Begin-end

 and statements denote a block of code, much like the “ ” braces in C and Java, and group multiple

statements together in determining computation “flow.” These can be used with procedural blocks (e.g.,

,) and conditional statements (e.g., - - ,). Like C, you do not have to use

them for single statements, but they generally help to create more readable and maintainable code.

Combinational Logic

The output of combinational logic is determined purely based on the current value of the inputs. Simple

computations can be written as statements, but complex designs generally go in blocks,

which will execute/trigger whenever any of the input signals change.

In behavioral code, it is easy to forget how the hardware actually works and pretend that it is just C or

Java (i.e., software). This is a great way to design AWFUL hardware. Because of this, we will give you

stylized ways of using the constructs which will guide you towards better designs – think about the

hardware that your system actually requires!

10

Sequential Logic

Sequential logic only updates its output when a specific event, typically a clock trigger, occurs. This allows the

design to hold/store state information and behave differently based on previous inputs. The event (i.e.,

expression that evaluates to true) is specified after the keyword and usually triggers from low to

high, , or high to low, . For example, the following block triggers on a rising edge of :

Blocking (=) and Non-blocking (<=) Assignment

Verilog includes two subtly different types of ways to assign values to variables, blocking () and non-blocking

():

• A blocking assignment takes effect before subsequent statements in the same block, which will see

the new value. So, will set both and to the value of .

• A non-blocking assignment occurs simultaneously (i.e., in parallel) with all others. So,

 will swap the values of and . Similarly, will set to the value of ,

and to the original/old value of .

The two kinds of assignment can be confusing and mixing them in one block is a recipe for disaster. The

following rules are an effective “rules of thumb” to avoid any issues:

1. Use for everything inside blocks (except the iteration variable in a loop).

2. Use for everything inside statements and blocks.

3. Avoid complex logic in blocks. Instead, compute complex logic in blocks,

assign the results to internal signals, and then use simple statements like “ ” in the

 blocks.

If-else if-else

The - - constructs look similar to software, but with the important distinction that each signal

must be defined in all cases. This is because the statement is equivalent to defining a logic function. is true

only when = , or when = and = . This is equivalent to the function = + . Similarly, = .

11

Failing to define a signal in all cases will result in one of two outcomes:

1) If the conditional block is inside an block, it will fail with the message:

always_comb construct does not infer purely combinational logic.

2) If not in an block, the code may compile with the warning:

inferring latch(es) for variable "var", which holds its previous value in one or more paths through the

always construct.

Although it may compile successfully, the design will likely exhibit unexpected behavior that is not intended to

be used in this class and therefore should be avoided.

Case

As we move to multi-bit signals that can take on values more than just and , the statement becomes

quite useful. The variable to be considered is placed in the parenthesis of the statement, and then

different values are listed with the associated action. For example in the code below, is set to when the

 variable is or and is set to if is , , or . There must also always be a case to catch

values that don’t match any other case. Any variable set in any part of the statement should be set in all

cases. That is, dropping the assignment from any of the cases would be incorrect. Here, we also use the

value to indicate that we do not care if the value is or , allowing the compiler to optimize the design.

Repeat

A loop is a simple statement that repeats a block of code a specified number of times. If you don’t need

to use the value of the loop variable, this is a much simpler syntax than writing out a -loop. For example, the

following code adds to ten times with an 8 arbitrary time unit delay between each addition.

For-Loops

A -loop in SystemVerilog is a much more limited structure compared to other programming languages. It

should only be used as a way of simplifying repetitive statements, not as a way of performing any form of logic.

A good rule to follow is:

12

The main scenario where -loops are useful in SystemVerilog is working with multi-bit signals. Sometimes

array slices are insufficient, for example if you want to assign bits in reverse order:

-loops can also be useful in test benches, as they often involve repetitive inputs which can be simplified.

Test Benches

Once a circuit is designed, you need some way to test it. For example, we would like to see how the

circuit we designed earlier behaves. To do this, we create a test bench. A test bench is a module that calls your

original module, often called the Device Under Test or DUT, with the desired input patterns and collects the

results. For example, consider the following setup:

If you cannot manually expand a -loop in your code, do not use it!

13

The new section of code in this example is the module . It instantiates one copy of the

 module, called , and connects input signals that we control and output signals that we can read.

In order to provide test data to the device under test, we create a stimulus block (lines 25-30). The code inside

the statement is executed once at the beginning of the simulation. It sets and to immediately

and then waits 10 arbitrary time units, keeping and at the assigned values. It then set to , keeping

unchanged, and again waits 10 time units. If we consider the entire block, the inputs go through the bit

patterns → → → , which tests all possible input combinations for this circuit. Other

orderings are possible and valid as long as they contain all desired input combinations. For example:

A -loop can be used to simplify sweeping through inputs. The following code is identical in function to the

previous example.

We use the fact that integers are encoded in binary and therefore can be assigned to other variables. This code

easily scales to an arbitrary number of signals of total width – the only changes required are to replace the

upper limit (i.e.,) with 2 (written as in Verilog) and to change the concatenation to include all the input

signals being tested.

14

Testbench Clock Simulator

A sequential circuit will need a clock. We can make a test bench simulate this with the following code:

Many other code variants exist that can produce a valid simulated clock signal. The simulated clock would be put

into the testbench for your system and all sequential modules would take as an input.

Waiting for a Signal

So far, testbench examples have used to delay instructions, but it is also possible to wait for a signal

to change instead of waiting a specific amount of time. This can be useful for debugging modules which take

multiple cycles to finish working. The syntax to wait for a signal to change is or

, similar to the sensitivity list for an block. For example, the following stimulus

block waits for the signal to go high before changing the simulated inputs.

Printing Values to the Console

Most development will use simulated waveforms to examine the state of signals over time. However,

sometimes in debugging it is useful to print messages as well (e.g., any time an error condition is found, print a

message about the error and the values of relevant variables). The command is one way to do this:

 takes an arbitrary number of arguments which are concatenated and printed to the console.

is a special function which returns the simulated time when it is called. The empty value between the call

and the string simply adds extra space to make the output more readable.

 prints once at the time specified. If you would prefer constant monitoring, use :

15

 prints once at the time specified and then any time afterward when any of the signals being

monitored changes.

Advanced Features – Multi-Dimensional Buses

Sometimes it can be useful to have signals with more than one dimension – for example, we might want to hold

sixteen 8-bit values. Verilog allows you to define multiple sets of indices (i.e., multiple packed dimensions):

To access a multi-dimensional packed variable, successive indices refer to the packed dimensions from left-to-

right. For example, the following code sets all the bits of a 3-dimensional bus to :

Unpacked Arrays

It is also possible to declare an array with the size after the variable name. This is called an unpacked array,

because successive elements of an unpacked dimension cannot be treated as one unit. A packed array of 8 bits

can be used as a byte, but an unpacked array of 8 bits can only be accessed one bit at a time:

A mismatched array type and will give an error message about the unpacked array type, often something like:

“unpacked array type cannot be assigned to integer vector type - types do not match”

It is possible to have a variable with both packed and unpacked dimensions. In this case, the unpacked

dimensions are access first from left-to-right, followed by the packed dimensions from left-to-right.

16

Advanced Features – Assert Statements

As you design larger systems, you will often have assumptions you would like to verify are true. For example,

you may have a parameterized module with a limited number of legal parameter values. Or, you may have a

module that assumes the inputs obey certain requirements. You could check this via simulation, but as the

design gets larger you are more and more likely to miss things.

The solution to this is the statement. During simulation, it will raise an error whenever the value inside

the assertion is false. So, if we have a parameter with only a few legal values, we can test it with an assertion

inside the module:

If we require that at least one input to a unit must always be true, we can test it with an always-running

assertion:

Advanced Features – Generate Statements

Earlier in this tutorial the and constructs were introduced in the context of RTL code, which dealt with

changing the values of existing signals. In order to put submodule calls and other logic within -loops and -

statements, the statement must be used. It begins with and ends with . All

structures to be generated, including modules, blocks, blocks, and

statements, should be placed inside all and statements.

Any -loops or -statements must have a block followed by a colon and a name, called the label.

Each construct generated will be identifiable by this label. These names can help when inspecting error

messages and will also appear when examining signals in ModelSim. The following example module creates a

number of submodules based on the parameter .

