
1

Quartus Prime Lite Version 17.0 Tutorial
Created September 10, 2014; Last Updated January 10, 2024

This tutorial will walk you through the process of developing circuit designs within Quartus, simulating

with Modelsim, and downloading designs to the DE1-SoC board.

[0] Installing the Quartus Software

Most of the designs in this class will be done through the Altera Quartus software. This is preloaded on

machines in the CSE 003 lab and you are welcome to do all the work on these PCs. If you would prefer

to work on your own machine, follow the instructions in Quartus_Install.pdf.

[1] File Setup for CSE369

For each lab in this class, we will create multiple files for your designs, for testing, and for downloading

to the DE1-SoC board. To keep things sane, we suggest creating subdirectories for each lab within a

class directory: create a cse369 directory and then create a lab1 subdirectory for Lab 1. If you are using

the lab machines, put your work onto your Z: drive (shared across all machines – it should be the drive

with your NetID on it).

Download Lab1_files_Q17.zip from the lab specs and unzip the files into the subdirectory you just

created. These files will help you get started quickly with Quartus.

The steps we show you here will be used throughout the class, so take notes and refer back to

the appropriate sections when you are working on future labs.

Do not reuse the same directory for different labs, because you will want to refer back to a

working design when you develop each new lab.

When you start each lab after Lab 1, copy the previous directory over as the new directory so

that you can reuse many of the files and the setup you did in previous labs.

2

[2] Creating Verilog Files in Quartus

The initial Lab 1 files set up a Quartus project, but now we need to add some actual “circuitry.”

We will create a simple design of a 2:1 MUX – this is a device with two data inputs i0 and i1, and a

select input sel. The output is equal to the i0 input when sel==0, and the output is equal to the i1

input when sel==1.

1) Start Quartus II by double-clicking on the DE1_SoC.qpf file.

2) Write your SystemVerilog code. You can download mux2_1.sv and mux2_1_tb.sv from the Lab

1 specs into your lab1 subdirectory and open them within Quartus. Make sure to check the

“Add file to current project” box in the Open File dialog. These contain the module we are

developing (“mux2_1”) and its test bench (“mux2_1_tb”) for verification.

For future labs, you can create code files from scratch by following the below steps:

a. Create a SystemVerilog file. Go to File→New, select “SystemVerilog HDL File”, and hit “OK”

(Figure 1). System Verilog is “modern” Verilog and has a lot of nice features over previous

versions of Verilog.

b. Name the file. The new file is opened for you in Quartus’ text editor, but doesn’t have a

name yet. Go to File→Save As and give it the same name as the module you are designing

(e.g., mux2_1.sv as shown in Figure 2). The title bar for the editor pane will change.

c. Populate the file. Type away! You may find it easier to copy-and-paste existing code as a

starting point.

Figure 1: Creating a new SystemVerilog file in

Quartus

Figure 2: Saving and naming Verilog files in Quartus.

Your PC may hide the file extension, so if you just see “DE1_SoC”, hover over the file

and make sure the pop-up information text says “QPF File.”

Every Verilog module should have a testbench, because the quickest way to get a

working design is to test each submodule as you write it.

3

[3] Synthesizing a Design

Now that we have the design created in Quartus, we need to check that it is valid Verilog:

1) Set the “top-level” design. As we go through the class, we will create designs with many

different modules all talking to one-another; Quartus needs to know which of the files holds the

top-level, complete design. In the upper-left side of Quartus is the “Project Navigator.” Select

“Files” in the drop-down menu to the right of the Project Navigator. Right-click on the file

“mux2_1.sv,” then select “Set as Top-Level Entity” (Figure 3).

2) Run Quartus’ Analysis and Synthesis tool. Look at the top toolbar for the blue checkmark with

the purple triangle and the tiny gate symbol (Figure 4). Press that button to have Quartus check

whether the design is at least syntactically correct.

3) Fix any syntax errors. The Analysis and Synthesis tool should run for a little while, and then tell

you in the message window (near the bottom of Quartus) that “Analysis & Synthesis was

successful.” If it does not, then check your design and any error messages found in the message

window – you can usually double-click on the error message and it will take you to exactly

where Quartus thinks the error is. Correct the problems, and re-run Analysis & Synthesis.

Once Quartus declares success, we know that the file is syntactically correct Verilog. However, we don’t

know whether the design is a proper implementation of the desired functionality. For that, we will

simulate the design, which uses the ModelSim simulator to show the actual behavior of our design.

Figure 3 (left): Setting the top-level file in a Quartus project.

Figure 4 (below): The “Start Analysis & Synthesis” button and where to find it.

This step is actually optional for running simulations. However, Quartus’ interface for

compilation warnings and errors is better than ModelSim’s, so we typically prefer to fix

our code here. Once you are confident in your syntax, you can skip this step after

making small code changes in-between simulation runs.

4

[4] Simulating a Design

In addition to Quartus II, we will be using the ModelSim software, which can simulate Verilog designs

before you ever run them on actual hardware. To help make using the tool easier, we have provided the

following three files as part of Lab1_files_Q17.zip:

• Launch_ModelSim.bat: A file to start ModelSim with the correct working directory.

• runlab.do: A command file for ModelSim that will compile your design, set up the windows for

the design, and start simulation.

• mux2_1_wave.do: A default file that sets up the simulation window.

1) Start ModelSim by double-clicking Launch_ModelSim.bat. This should show a blue title screen

before the ModelSim opens.

2) Simulate the circuit by issuing the command “do runlab.do” in the Transcript pane. The

Transcript pane can be found at the bottom of the ModelSim window (Figure 5). The

runlab.do file will compile and run the simulation for mux2_1.

3) View the results in the Wave pane (Figure 6). Time moves from left (start) to right (end), with a

green line for each input and output of the design. When the green line is up, it means that

signal is true; when the green line is down, it means the signal is false.

If you instead saw a black window flash by and nothing happened, then your ModelSim

is installed at a non-standard location; edit the Launch_ModelSim.bat file and put in

the correct path to the Modelsim.exe executable. Save the file and retry.

The path you enter should resemble the following:
 C:\intelFPGA_lite\17.0\modelsim_ase\win32aloem\modelsim.exe

If your path shows “modelsim_ae”, modify it to be “modelsim_ase” instead.

Hitting <Tab> when you have typed “do r” will auto-complete with the full command,

since there are no other files in the Lab 1 directory that start with “r”.

Any red or blue lines indicate that there is a problem in your Verilog files; check that

you have done all of the previous steps correctly.

5

Figure 5: Entered the command "do runlab.do" into the Transcript pane. Press <Enter> to issue the command.

Figure 6: Simulation results shown in the Wave pane.

6

[5] Navigating the Simulation

The initial waveforms are rather hard to see, so let’s explore the navigation options in ModelSim:

• Use the Zoom commands: Found in the toolbars near the top of ModelSim.

Use the left two commands (+ and – magnifying glass) to zoom so that the green waves fill the

Wave pane. Notice that the scrollbar at the bottom now becomes useful, allowing us to move

around in the simulation. The time for each horizontal position is shown at the bottom. The

third button (black-filled magnifying glass) zooms to fit the entire waveform in the window.

• View signal values in the Msgs column: Left-click anywhere within the waveform viewer (the

part with the black background) to move the cursor, which is the yellow vertical line with the

time in yellow at the bottom (Figure 7). The Msgs column will update with the signal values at

the time specified by the cursor (Figure 8).

• Use the Wave Cursor commands to jump to points of interest: Also found in the toolbars near

the top of ModelSim. To be usable, a single signal must be selected/highlighted (either click on

a signal name or somewhere on the green waveform for that signal).

Select the i1 signal and play with the six cursor movement commands to see what they do.

Figure 7: You can move the cursor (yellow line) within the
waveform viewer (black background) of the Wave pane.

Figure 8: The values in the Msgs column will automatically

update as you move the cursor.

Many of the following commands will only be usable if the Wave pane is selected. If you don’t

see the Wave pane or ever accidentally close it, go to View→Wave to re-open it.

The signal values you will see are 0, 1, St0 (“strong 0”), and St1 (“strong 1”). For the

purposes of this class, St0 and St1 are equivalent to 0 and 1, respectively.

7

[6] Saving the Simulation View

Once we have adjusted our simulation view to better display our design results, we will often want to

save these settings into a file so our next simulation run will return to this Wave pane setup.

1) Make sure that the Wave pane is active by clicking anywhere within it (signal list, Msgs column,

or waveform viewer).

2) Select File→Save Format or press Control-S.

3) Overwrite the file mux2_1_wave.do. In general, we will use the format file naming convention

of <moduleName>_wave.do.

Now when you re-run your simulation, even after changing the Verilog files, it will have the Wave pane

set up exactly the way we left it!

[7] More Complex Designs – Create a 4:1 MUX

The 2:1 MUX is a simple design to get you started. But real designs will have multiple files and won’t

have all the scripts set up for you. Here we will show you how to build a new, more complex design that

will demonstrate how to work with the various ModelSim support files.

1) Download mux4_1.sv, which uses mux2_1 as a submodule, and mux4_1_tb.sv from the lab

specs into your lab1 folder. Open them within Quartus, making sure to check the “Add file to

current project” box in the Open File dialog.

2) Set mux4_1.sv as the top-level entity and run the Analysis & Synthesis tool. Fix errors as

necessary until successful.

[7a] More Complex Designs – ModelSim Command File

Before we can simulate, we need to modify runlab.do for the new design. In the text editor of your

choice (e.g., WordPad, Notepad), open runlab.do and make the following modifications (Figure 9):

1) Add vlog "./mux4_1.sv" and vlog "./mux4_1_tb.sv" to the compilation section. For all

Quartus designs, you will have one “vlog” line for each Verilog file in your design.

2) Change the “vsim” line to end with mux4_1_tb instead of mux2_1_tb to change the module

being simulated/tested.

3) Edit the “do” line to end with mux4_1_wave.do instead of mux2_1_wave.do to change the

waveform settings. Each module should have its own *_wave.do file, so that during debugging

of a large project you can switch between different modules to test.

Save runlab.do, run Launch_ModelSim.bat in the lab1 directory, then execute “do runlab.do”.

The system should start simulating, show the waveform pane, and then give an error that it cannot open

the macro file mux4_1_wave.do. That’s because we haven’t provided the waveform file for you; you

need to create it yourself once you’ve found a simulation view that you like!

8

Figure 9: The modifications: (1) add files to compile, (2) change the testbench to simulate, and (3) change waveform settings.

[7b] More Complex Designs – ModelSim Waveform Macro

Our goal is to get the Wave pane properly set up so we can save the waveform settings as a *_wave.do

file.

1) Locate the sim tab (confusingly opened via View→Structure), which may be hidden behind the

“Library” or “Project” tabs on the left side of ModelSim. This tab shows the various modules in

the design.

2) mux4_1_tb is the top-level design, which contains dut (“device under test”), the name of the

mux4_1 module we are testing. Clicking on the plus next to dut shows the three mux2_1’s inside

of the mux4_1: m0, m1, and m. If you click on any of the units in the sim tab, the Objects pane

next to it shows the signals inside that module (Figure 10).

3) Click on mux4_1_tb in the sim tab, select all of the signals in the Objects pane except i, and

drag-and-drop them into the Wave pane.

4) Save the waveform as mux4_1_wave.do to create the missing file for simulation.

5) Re-run “do runlab.do” from the Transcript pane to get a simulation of the entire design.

Examine the waveforms using the navigation techniques. Figure out what the mux4_1 module actually

does.

9

Figure 10: The sim tab is found on the far-left and contains all of the modules in this design. Selecting a module or submodule
will show all of the signals contained in that module in the Objects pane just to the right.

[8] Process Recap

You now have the commands necessary to develop new designs, commands you will use for all future

labs. Just to make sure you’ve got it, here’s a cheat-sheet of the steps for future Verilog designs:

1) Make a copy of a previous lab directory to build off of what you already have (Quartus project

file, ModelSim files) while keeping the old design as a reference.

2) For each module you need to write:

a) Create and populate two new files, one for the module definition and one for that module’s

test bench.

b) Set the new module file as the top-level module in Quartus.

c) Run Analysis and Synthesis and fix any errors it finds.

d) Edit runlab.do to include the new module and run its test bench and yet-to-be created

simulation view.

e) Start ModelSim and perform “do runlab.do.” Fix any errors the compiler finds.

f) When it complains about a missing *_wave.do file, set up the Wave pane by drag-and-

dropping signals from the Object pane. Save the waveform setup using File→“Save

Formatting”, then perform “do runlab.do” again.

g) Check the simulation results, correct errors, and iterate until the module works as intended.

This process has two major features: First, it has you test every module before you work on the larger

modules that call this unit. This will significantly simplify the design process. Second, you have a

separate *_wave.do file for each Verilog file. This keeps a formatted test window for each module,

which can help when you discover a fresh bug in a larger design later on. You can always go back and

test a submodule by simply editing the runlab.do file to point to the testbench and *_wave.do file for

the unit you want to test.

10

[9] Mapping a Design to the FPGA Hardware

So far we have developed and tested a design completely in software. Once it is working, it is time to

use Quartus II to convert that design into a form that can actually be loaded onto the FPGA.

To use the switches, lights, and buttons on the DE1 board, we need to hook up the connections of the

circuit design to the proper inputs and outputs of the FPGA.

Download the file lab1.sv from the Lab 1 specs into your lab1 folder, add it to your project, then set it

as the top-level entity.

We now need to compile the design into a bitfile, a file that can be downloaded to the FPGA. To do

that, we press the “Start Compilation” button just to the left of the “Analysis & Synthesis” button we

have used before:

This will run the multiple steps necessary to compile the design. You can watch the progress of the

compilation in the Tasks pane in the lower-left of Quartus.

[10] Configuring the FPGA with the Bitfile

We now need to send the bitfile to the DE1-SoC.

1) Connect the DE1-SoC to wall power with the power cord.

2) Make sure that the board is off (i.e., the board should not light up when you plug it in), then

connect the board to your computer’s USB. You can then turn on the DE1-SoC.

3) In Quartus, go to File→Open. In the “Files of type” box at bottom, select

“Programming Files (*.cdf …” and then double-click on ProgramTheDE1_SoC.cdf (Figure 11).

4) This will bring up the Programmer dialog box (Figure 12).

a) If the “Start” button is active, proceed to the next step.

b) If the “Start” button is greyed out, you need to first run click the “Hardware Setup…” button.

This will bring up the “Hardware Setup” dialog box. Set “Currently selected hardware” to

“DE-SoC”, and close the dialog box (Figure 13).

5) Click the “Start” button and the DE1 board will be programmed – you’re done!

When you are developing a design, you can keep the Programmer dialog box open so that you

can download the design multiple times, including after changing the input files and recompiling

the design.

11

Figure 11: Open the chain description file (.cdf) to program the DE1-SoC

Figure 12: Programmer dialog box with the “Start” and “Hardware Setup…” buttons highlighted.

Figure 13: Hardware Setup dialog box in case the “Start” button in the Programmer dialog box was greyed out.

12

[11] Appendix A: Files in the Default Project

For those who are interested, here are what each of the files contained in Lab1_files_Q17.zip do:

Filename Purpose
DE1_SoC.qpf Quartus project file. Top-level that groups all the information together.

Preconfigured for the DE1-SoC board.
DE1_SoC.qsf Sets up the pin assignments, which connects the signals of the user design

to specific pins on the FPGA.
DE1_SoC.sdc Tells Quartus about the timing of various signals.
DE1_SoC.srf Tells Quartus to not print some useless warning messages.
Launch_Modelsim.bat Simple batch file – starts ModelSim in the current directory.
mux2_1_wave.do Sets up the waveform viewer for the first design.
ProgramTheDE1_SoC.cdf Programmer file, tells Quartus how to download designs to the DE1.
runlab.do ModelSim .do file – compiles and simulates the design.

