Intro to Digital Design Circuit Building Blocks I

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings Emilio Alcantara Naoto Uemura

Donovan Clay Joy Jung

Relevant Course Information

- Lab 6 Connecting multiple FSMs in Tug of War game
 - Bigger step up in difficulty from Lab 5
 - Putting together complex system interconnections!
 - Bonus points for smaller resource usage

Clock Divider (not for simulation)

Why/how does this work?

```
// divided_clocks[0]=25MHz, [1]=12.5Mhz, ...
module clock_divider (clock, divided_clocks);
input logic clock;
output logic [31:0] divided_clocks;
initial
divided_clocks = 0;
always_ff @(posedge clock)
divided_clocks <= divided_clocks + 1;
endmodule</pre>
```

Outline

* FSM Design

- Multiplexors
- Adders

FSM Design Process

- 1) Understand the problem
- 2) Draw the state diagram
- 3) Use state diagram to produce state table
- 4) Implement the combinational control logic

Practice: String Recognizer FSM

- Recognize the string 101 with the following behavior
 - Input: 1 0 0 1 0 1 0 1 1 0 0 1 0
 - Output: 0 0 0 0 0 1 0 1 0 0 0 0 0
- State diagram to implementation:

HDL Organization

- Most problems are best solved with multiple pieces how to best organize your system and code?
- Everything is computed in parallel
 - We use routing elements (next lecture) to select between (or ignore) multiple outcomes/parts
 - This is why we use block diagrams and waveforms
- A module is not a *function*, it is closest to a *class*
 - Something that you *instantiate*, not something that you *call*
 hardware cannot appear and disappear spontaneously
 - Should treat modules as *resource managers* rather than temporary helpers
 - This can include having internal modules

Subdividing FSMs Example

- * "Psychic Tester"
 - Machine generates a 4-bit pattern
 - User tries to guess 8 patterns in a row to be deemed psychic

States?

Example: Plan First with Block Diagram

- Pieces?
 - Generate/pick pattern
 - User input (guess)
 - Check guess
 - Count correct guesses

Example: Implementation & Testing

- 1) Create individual submodules
- 2) Create submodules test benches test as usual
 - CL run through all input combinations
 - SL take every transition that you care about
- 3) Create top-level module
 - Create instance of each submodule
 - Create wires/nets to connect signals between submodules, inputs, and outputs
- 4) Create top-level test bench
 - Goal is to check the interconnections between submodules

 does input/state change in one submodule trigger the
 expected change in other submodules?

Outline

- FSM Design
- * Multiplexors
- Adders

Data Multiplexor

- Multiplexor ("MUX") is a selector
 - Direct one of many (N = 2^s) n-bit wide inputs onto output
 - Called a *n*-bit, N-to-1 MUX
- ✤ <u>Example</u>: *n*-bit 2-to-1 MUX
 - Input S (s bits wide) selects between two inputs of n bits each

This input is passed to output if selector bits match shown value

Review: Implementing a 1-bit 2-to-1 MUX

Boolean Algebra:

 $c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$ = $\overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab)$ = $\overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b)$ = $\overline{s}(a(1) + s((1)b)$ = $\overline{s}a + sb$

1-bit 4-to-1 MUX

* Schematic: a b c d

- Truth Table: How many rows? 2⁶
- Boolean Expression:

 $e = \overline{s_1}\overline{s_0}a + \overline{s_1}s_0b + s_1\overline{s_0}c + s_1s_0d$

1-bit 4-to-1 MUX

- Can we leverage what we've previously built?
 - Alternative hierarchical approach:

Multiplexers in General Logic

♦ Implement $F = X\overline{Y}Z + Y\overline{Z}$ with a 8:1 MUX

Technology

Break

Outline

- FSM Design
- Multiplexors
- * Adders

Review: Unsigned Integers

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- ✤ In n bits, represent integers 0 to 2^n -1
- Add and subtract using the normal "carry" and "borrow" rules, just in binary

63	00111111	64	0100000
+ <u>8</u>	+ <u>00001000</u>	- <u>8</u>	- <u>00001000</u>
71	01000111	56	00111000

Review: Two's Complement (Signed)

Properties:

- In n bits, represent integers -2^{n-1} to $2^{n-1} 1$
- + 0 Positive number encodings match +11111 0000 unsigned numbers 1110 0001 + 2 Single zero (encoding = all zeros) 0010 1101 + 3 Negation procedure: 0011 1100Two's Complement 1011 0100 Take the bitwise complement - 5 1010 0101 and then add one - 6 0110 1001 -x + 1 == -x1000 0111 + 6 8 + 7 21

Addition and Subtraction in Hardware

- The same bit manipulations work for both unsigned and two's complement numbers!
 - Perform subtraction via adding the negated 2^{nd} operand: $A - B = A + (-B) = A + (\sim B) + 1$
- & 4-bit examples:

	Two's Ur	1			Two's	Un
0010	+2 2		1	0 0 0) -8	8
+ 1 1 0 0	-4 12	2	+ 0	100) +4	4
0110	+6 6		1	111	L -1	15
- 0 0 1 0	+2 2		- 1	11() -2	14

Half Adder (1 bit)

	a_3	8	\mathfrak{l}_2	a_1	\mathbf{a}_0
+	b_3	ł) ₂	b_1	\mathbf{b}_0
	s_3	S	\mathbf{S}_2	s_1	s ₀
				Carry-c	out bit
	a_0	\mathbf{b}_0	C₁ ∠	s ₀	
	0	0	0	0	
	0	1	0	1	
	1	0	0	1	
	1	1	1	0	

$$Carry = a_0 b_0$$
$$Sum = a_0 \bigoplus b_0$$

Full Adder (1 bit)

						Possi	ble
				K		carry	'-in c ₁
	a_3	8	\mathfrak{l}_2	a_1		a_0	
+	b_3	b_2		b_1	1	b_0	
	s_3	S	\mathbf{S}_2	s_1		s ₀	
Carry-in Carry-out							
	×c _i	${\tt a}_{\tt i}$	${\tt b}_{\tt i}$	C [⊮] i+1	${f s}_{i}$		
	0	0	0	0	0	_	
	0	0	1	0	1		
	0	1	0	0	1		
	0	1	1	1	0		
	1	0	0	0	1		
	1	0	1	1	0		
	1	1	0	1	0		
	1	1	1	1	1		

$$s_i = XOR(a_i, b_i, c_i)$$
$$c_{i+1} = MAJ(a_i, b_i, c_i)$$
$$= a_i b_i + a_i c_i + b_i c_i$$

Multi-Bit Adder (N bits)

 Chain 1-bit adders by connecting CarryOut_i to CarryIn_{i+1}:

Subtraction?

- Can we use our multi-bit adder to do subtraction?
 - Flip the bits and add 1?
 - $X \oplus 1 = \overline{X}$
 - CarryIn₀ (using full adder in all positions)

Multi-bit Adder/Subtractor

Detecting Arithmetic Overflow

- Overflow: When a calculation produces a result that can't be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- Unsigned Overflow
 - Result of add/sub is > UMax or < Umin</p>
- Signed Overflow
 - Result of add/sub is > TMax or < TMin</p>
 - (+) + (+) = (-) or (-) + (-) = (+)

Signed Overflow Examples

Multi-bit Adder/Subtractor with Overflow

Arithmetic and Logic Unit (ALU)

- Processors contain a special logic block called the "Arithmetic and Logic Unit" (ALU)
 - Here's an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit numbers)
- Schematic:

when S=00, R = A+B
when S=01, R = A-B
when S=10, R = A&B
when S=11, R = A | B

Simple ALU Schematic

1-bit Adders in Verilog

- What's wrong with this?
 - Truncation!

```
module halfadd1 (s, a, b);
output logic s;
input logic a, b;
always_comb begin
   s = a + b;
end
endmodule
```

- Fixed:
 - Use of {sig, ..., sig}
 for concatenation

```
module halfadd2 (c, s, a, b);
output logic c, s;
input logic a, b;
always_comb begin
{c, s} = a + b;
end
endmodule
```

Ripple-Carry Adder in Verilog

```
module fulladd (cout, s, cin, a, b);
output logic cout, s;
input logic cin, a, b;
always_comb begin
{cout, s} = cin + a + b;
end
endmodule
```

Chain full adders?

```
module add2 (cout, s, cin, a, b);
output logic cout; output logic [1:0] s;
input logic cin; input logic [1:0] a, b;
logic c1;
fulladd b1 (cout, s[1], c1, a[1], b[1]);
fulladd b0 (c1, s[0], cin, a[0], b[0]);
endmodule
```

Add/Sub in Verilog (parameterized)

Variable-width add/sub (with overflow, carry)

```
module addN # (parameter N=32) (OF, CF, S, sub, A, B);
  output logic OF, CF;
  output logic [N-1:0] S;
  input logic sub;
 input logic [N-1:0] A, B;
 logic [N-1:0] D; // possibly flipped B
 logic C2; // second-to-last carry-out
  always comb begin
   D = B ^ {N{sub}}; // replication operator
   \{C2, S[N-2:0]\} = A[N-2:0] + D[N-2:0] + sub;
   \{CF, S[N-1]\} = A[N-1] + D[N-1] + C2;
   OF = CF ^ C2;
  end
endmodule
```

- Here using OF = overflow flag, CF = carry flag
 - From condition flags in x86-64 processors

Add/Sub in Verilog (parameterized)

```
module addN testbench ();
 parameter N = 4;
 logic sub;
 logic [N-1:0] A, B;
 logic OF, CF;
 logic [N-1:0] S;
  addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);
 initial begin
   #100; sub = 0; A = 4'b0101; B = 4'b0010; // 5 + 2
   #100; sub = 0; A = 4'b1101; B = 4'b1011; // -3 + -5
   #100; sub = 0; A = 4'b0101; B = 4'b0011; // 5 + 3
   #100; sub = 0; A = 4'b1001; B = 4'b1110; // -7 + -2
   #100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 - (-2)
   #100; sub = 1; A = 4'b1101; B = 4'b0101; // -3 - 5
   #100; sub = 1; A = 4'b0101; B = 4'b1101; // 5 - (-3)
   #100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2
   #100;
 end
endmodule
```