
CSE369, Winter 2024L6: Building Blocks I

Intro to Digital Design
Circuit Building Blocks I

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings Donovan Clay

Emilio Alcantara Joy Jung

Naoto Uemura

CSE369, Winter 2024L6: Building Blocks I

Relevant Course Information

❖ Lab 6 – Connecting multiple FSMs in Tug of War game

▪ Bigger step up in difficulty from Lab 5

▪ Putting together complex system – interconnections!

▪ Bonus points for smaller resource usage

2

CSE369, Winter 2024L6: Building Blocks I

Clock Divider (not for simulation)

❖ Why/how does this work?

3

// divided_clocks[0]=25MHz, [1]=12.5Mhz, ...

module clock_divider (clock, divided_clocks);

input logic clock;

output logic [31:0] divided_clocks;

initial

divided_clocks = 0;

always_ff @(posedge clock)

divided_clocks <= divided_clocks + 1;

endmodule

CSE369, Winter 2024L6: Building Blocks I

Outline

❖ FSM Design

❖ Multiplexors

❖ Adders

4

CSE369, Winter 2024L6: Building Blocks I

FSM Design Process

1) Understand the problem

2) Draw the state diagram

3) Use state diagram to produce state table

4) Implement the combinational control logic

5

CSE369, Winter 2024L6: Building Blocks I

Practice: String Recognizer FSM

❖ Recognize the string 101 with the following behavior

▪ Input: 1 0 0 1 0 1 0 1 1 0 0 1 0

▪ Output: 0 0 0 0 0 1 0 1 0 0 0 0 0

❖ State diagram to implementation:

6

00 01 11 10

0

1

00 01 11 10

0

1

00 01 11 10

0

1

CSE369, Winter 2024L6: Building Blocks I

HDL Organization

❖ Most problems are best solved with multiple pieces –
how to best organize your system and code?

❖ Everything is computed in parallel

▪ We use routing elements (next lecture) to select between
(or ignore) multiple outcomes/parts

▪ This is why we use block diagrams and waveforms

❖ A module is not a function, it is closest to a class

▪ Something that you instantiate, not something that you call
– hardware cannot appear and disappear spontaneously

▪ Should treat modules as resource managers rather than
temporary helpers
• This can include having internal modules

7

CSE369, Winter 2024L6: Building Blocks I

Subdividing FSMs Example

❖ “Psychic Tester”

▪ Machine generates a 4-bit pattern

▪ User tries to guess 8 patterns in a row to be deemed psychic

❖ States?

8

CSE369, Winter 2024L6: Building Blocks I

Example: Plan First with Block Diagram

❖ Pieces?

▪ Generate/pick pattern

▪ User input (guess)

▪ Check guess

▪ Count correct guesses

9

CSE369, Winter 2024L6: Building Blocks I

Example: Implementation & Testing

1) Create individual submodules

2) Create submodules test benches – test as usual

▪ CL – run through all input combinations

▪ SL – take every transition that you care about

3) Create top-level module

▪ Create instance of each submodule

▪ Create wires/nets to connect signals between submodules,
inputs, and outputs

4) Create top-level test bench

▪ Goal is to check the interconnections between submodules
– does input/state change in one submodule trigger the
expected change in other submodules?

11

CSE369, Winter 2024L6: Building Blocks I

Outline

❖ FSM Design

❖ Multiplexors

❖ Adders

12

CSE369, Winter 2024L6: Building Blocks I

Data Multiplexor

❖ Multiplexor (“MUX”) is a selector

▪ Direct one of many (N = 2s) 𝑛-bit wide inputs onto output

▪ Called a 𝑛-bit, N-to-1 MUX

❖ Example: 𝑛-bit 2-to-1 MUX
▪ Input S (s bits wide) selects between two inputs of 𝑛 bits

each

13

This input is passed to
output if selector bits
match shown valueN inputs

CSE369, Winter 2024L6: Building Blocks I

Review: Implementing a 1-bit 2-to-1 MUX

❖ Schematic:

❖ Truth Table:

❖ Boolean Algebra:

❖ Circuit Diagram:

14

s a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CSE369, Winter 2024L6: Building Blocks I

1-bit 4-to-1 MUX

❖ Schematic:

❖ Truth Table: How many rows?

❖ Boolean Expression:
𝑒 = ഥ𝑠1 ഥ𝑠0𝑎 + ഥ𝑠1𝑠0𝑏 + 𝑠1 ഥ𝑠0𝑐 + 𝑠1𝑠0𝑑

15

26

CSE369, Winter 2024L6: Building Blocks I

1-bit 4-to-1 MUX

❖ Can we leverage what we’ve previously built?

▪ Alternative hierarchical approach:

16

CSE369, Winter 2024L6: Building Blocks I

Multiplexers in General Logic

❖ Implement F = XഥYZ + YതZ with a 8:1 MUX

17

S2
S1
S0

0

7

1

2

3

4

5

6

F
8:1

MUX

CSE369, Winter 2024L6: Building Blocks I

Technology

Break
18

CSE369, Winter 2024L6: Building Blocks I

Outline

❖ FSM Design

❖ Multiplexors

❖ Adders

19

CSE369, Winter 2024L6: Building Blocks I

Review: Unsigned Integers

❖ Unsigned values follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

❖ In 𝑛 bits, represent integers 0 to 2𝑛-1

❖ Add and subtract using the normal “carry” and
“borrow” rules, just in binary

20

00111111

+00001000

01000111

63

+ 8

71

01000000

-00001000

00111000

64

- 8

56

CSE369, Winter 2024L6: Building Blocks I

Review: Two’s Complement (Signed)

❖ Properties:

▪ In 𝑛 bits, represent integers −2𝑛−1 to 2𝑛−1 − 1

▪ Positive number encodings match
unsigned numbers

▪ Single zero (encoding = all zeros)

❖ Negation procedure:

▪ Take the bitwise complement
and then add one
(~x + 1 == -x)

21

bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

CSE369, Winter 2024L6: Building Blocks I

Addition and Subtraction in Hardware

❖ The same bit manipulations work for both unsigned
and two’s complement numbers!

▪ Perform subtraction via adding the negated 2nd operand:
A − B = A + −B = A + ~B + 1

❖ 4-bit examples:

22

Two’s Un

0 0 1 0 +2 2

+ 1 1 0 0 -4 12

Two’s Un

1 0 0 0 -8 8

+ 0 1 0 0 +4 4

0 1 1 0 +6 6

- 0 0 1 0 +2 2

1 1 1 1 -1 15

- 1 1 1 0 -2 14

CSE369, Winter 2024L6: Building Blocks I

Half Adder (1 bit)

23

Carry-out bit
a0 b0 c1 s0

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Carry = a0b0
Sum = 𝑎0 ⊕b0

CSE369, Winter 2024L6: Building Blocks I

Full Adder (1 bit)

24

Possible
carry-in c1

ci ai bi ci+1 si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

𝒔𝒊 = XOR 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖

𝒄𝒊+𝟏 = MAJ 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖
𝒄𝒊+𝟏 = 𝑎𝑖𝑏𝑖 + 𝑎𝑖𝑐𝑖 + 𝑏𝑖𝑐𝑖

Carry-outCarry-in

CSE369, Winter 2024L6: Building Blocks I

Multi-Bit Adder (N bits)

❖ Chain 1-bit adders by connecting CarryOuti to
CarryIni+1:

25

+ + +

b0

CSE369, Winter 2024L6: Building Blocks I

Subtraction?

❖ Can we use our multi-bit adder to do subtraction?

▪ Flip the bits and add 1?

• X⊕ 1 = ഥX

• CarryIn0 (using full adder in all positions)

26

+ + +

b0

CSE369, Winter 2024L6: Building Blocks I

Multi-bit Adder/Subtractor

27

𝑥 ⊕ 1 = ҧ𝑥
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

+ + +

CSE369, Winter 2024L6: Building Blocks I

Detecting Arithmetic Overflow

❖ Overflow: When a calculation produces a result that
can’t be represented in the current encoding scheme

▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative directions

❖ Unsigned Overflow

▪ Result of add/sub is > UMax or < Umin

❖ Signed Overflow

▪ Result of add/sub is > TMax or < TMin

▪ (+) + (+) = (−) or (−) + (−) = (+)

28

CSE369, Winter 2024L6: Building Blocks I

Signed Overflow Examples

29

Two’s

0 1 0 1 +5

+ 0 0 1 1 +3

Two’s

1 0 0 1 -7

+ 1 1 1 0 -2

Two’s

0 1 0 1 +5

+ 0 0 1 0 +2

Two’s

1 1 0 0 -4

+ 0 1 0 0 4

CSE369, Winter 2024L6: Building Blocks I

Multi-bit Adder/Subtractor with Overflow

30

+ + +

CSE369, Winter 2024L6: Building Blocks I

Arithmetic and Logic Unit (ALU)

❖ Processors contain a special logic block called the
“Arithmetic and Logic Unit” (ALU)

▪ Here’s an easy one that does ADD, SUB, bitwise AND, and
bitwise OR (for 32-bit numbers)

❖ Schematic:

31

when S=00, R = A+B
when S=01, R = A–B
when S=10, R = A&B
when S=11, R = A|B

CSE369, Winter 2024L6: Building Blocks I

Simple ALU Schematic

32

Notice that 3 values
are ALWAYS calculated
in parallel, but only 1
makes it to the Result

CSE369, Winter 2024L6: Building Blocks I

1-bit Adders in Verilog

❖ What’s wrong with this?

▪ Truncation!

❖ Fixed:
▪ Use of {sig, …, sig}

for concatenation

33

module halfadd1 (s, a, b);

output logic s;

input logic a, b;

always_comb begin

s = a + b;

end

endmodule

module halfadd2 (c, s, a, b);

output logic c, s;

input logic a, b;

always_comb begin

{c, s} = a + b;

end

endmodule

CSE369, Winter 2024L6: Building Blocks I

Ripple-Carry Adder in Verilog

❖ Chain full adders?

34

module fulladd (cout, s, cin, a, b);

output logic cout, s;

input logic cin, a, b;

always_comb begin

{cout, s} = cin + a + b;

end

endmodule

module add2 (cout, s, cin, a, b);

output logic cout; output logic [1:0] s;

input logic cin; input logic [1:0] a, b;

logic c1;

fulladd b1 (cout, s[1], c1, a[1], b[1]);

fulladd b0 (c1, s[0], cin, a[0], b[0]);

endmodule

CSE369, Winter 2024L6: Building Blocks I

Add/Sub in Verilog (parameterized)

❖ Variable-width add/sub (with overflow, carry)

▪ Here using OF = overflow flag, CF = carry flag

• From condition flags in x86-64 processors

35

module addN #(parameter N=32) (OF, CF, S, sub, A, B);

output logic OF, CF;

output logic [N-1:0] S;

input logic sub;

input logic [N-1:0] A, B;

logic [N-1:0] D; // possibly flipped B

logic C2; // second-to-last carry-out

always_comb begin

D = B ^ {N{sub}}; // replication operator

{C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;

{CF, S[N-1]} = A[N-1] + D[N-1] + C2;

OF = CF ^ C2;

end

endmodule

CSE369, Winter 2024L6: Building Blocks I

Add/Sub in Verilog (parameterized)

36

module addN_testbench ();

parameter N = 4;

logic sub;

logic [N-1:0] A, B;

logic OF, CF;

logic [N-1:0] S;

addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);

initial begin

#100; sub = 0; A = 4'b0101; B = 4'b0010; // 5 + 2

#100; sub = 0; A = 4'b1101; B = 4'b1011; // -3 + -5

#100; sub = 0; A = 4'b0101; B = 4'b0011; // 5 + 3

#100; sub = 0; A = 4'b1001; B = 4'b1110; // -7 + -2

#100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 -(-2)

#100; sub = 1; A = 4'b1101; B = 4'b0101; // -3 - 5

#100; sub = 1; A = 4'b0101; B = 4'b1101; // 5 -(-3)

#100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2

#100;

end

endmodule

