University of Washington - Computer Science & Engineering

Autumn 2016 Instructor: Justin Hsia 2016-11-01

CSE 369 QUIZ 1

ivame: Peter Periett	Name:	Peter Perfect
----------------------	-------	---------------

UWNetID: _1234567_____

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score	
(1) CL Gates	8	8	
(2) K-map	5	5	
(3) Waveforms & Verilog	11	11	
Total:	24	24	

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. [2 pts] $\mathbf{F} = \overline{\mathbf{ABC}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$

(B) Find a minimal implementation of the function below using only **2-input NOR** gates. [6 pts]

$$F = \overline{A}\overline{B}(C+D)$$

[2 pt] Valid gate conversion from expression[2 pt] DeMorgan's applications (either in expression or gate)[2 pt] Conversion of extra

NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms & Verilog [11 pts]

For both parts below, consider the following desired truth table and the Verilog simulated testbench waveforms shown below.

				 input A ·0·			: : :			
\mathbf{A}	В	\mathbf{C}	\mathbf{F}							· · · · ·
0	0	0	0	input B ·0·						· · · · ·
0	0	1	1			-				·
0	1	0	0	input C ·0·	∴ ∷	•	▋∷∶▮			
0	1	1	0	wire X ·1·		7 : :				
1	0	0	0			<u> </u>				
1	0	1	1	wire Y·0·			Ţ∷ï	∷∶Г		
1	1	0	0			-				
1	1	1	1	output F ·O·	∴ : :	<u> </u>	• • •		• • • •	
				 t=0		 t=30	t=	 :60	 t=90	 t=120

- (A) Identify the time interval(s) where the testbench output does not match the desired functionality. Each horizontal tick represents 5 time units. [3 pts] Incorrect in [75,90] and [105,120] (0 when it should be 1) [1.5 pt each]. [-0.5 pt each] if input combinations instead of time intervals.
- (B) If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below based on the testbench output. [8 pts]

```
module Mystery (F, A, B, C);
  output F;
  input A, B, C;
  wire X, Y;

  nor G1 (X, A, B); or assign X = ~(A|B);

  xor G2 (Y, B, C); or assign Y = B^C;
  and G3 (F, X, Y);
endmodule
```

```
[2 pt each] Correct input signals (A, B for X; B, C for Y)
[1 pt each] Correct gate (NOR for X, XOR for Y)
[1 pt each] Correct syntax (module names, argument order, assign keyword)
```