University of Washington - Computer Science \& Engineering

Autumn 2016 Instructor: Justin Hsia 2016-11-01

Name: _Peter_Perfect
 UWNetID: _1234567
 \qquad

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	11	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. [2 pts] $\mathbf{F}=\overline{\mathbf{A} \overline{\mathbf{B}} \mathbf{C}}+\overline{\mathbf{B}+\mathbf{C}}$

$$
\begin{array}{ll}
\mathrm{X}=\mathrm{A} \overline{\mathrm{~B}} & {[0.5 \mathrm{pt}]} \\
\mathrm{Y} & =\overline{\mathrm{XC}} \\
\mathrm{Z} & =\overline{\mathrm{B}+\mathrm{C}} \\
& {[0.5 \mathrm{pt}]} \\
\mathrm{F} & =\mathrm{Y}+\mathrm{Z} \\
& {[0.5 \mathrm{pt}]} \\
{[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2-input NOR gates. [6 pts]
$F=\overline{\bar{A} \bar{B}(C+D)}$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's
applications (either in expression or gate)
[2 pt] Conversion of extra
NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [11 pts]

For both parts below, consider the following desired truth table and the Verilog simulated testbench waveforms shown below.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{0}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{0}$
1	0	1	$\mathbf{1}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

(A) Identify the time interval(s) where the testbench output does not match the desired functionality. Each horizontal tick represents 5 time units. [3 pts] Incorrect in $[\mathbf{7 5 , 9 0}]$ and $[\mathbf{1 0 5 , 1 2 0}]$ (0 when it should be 1) [1.5 pt each]. [-0.5 pt each] if input combinations instead of time intervals.
(B) If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below based on the testbench output. [8 pts]

```
module Mystery (F, A, B, C);
    output F;
    input A, B, C;
    wire X, Y;
    nor G1 (X, A, B); or assign X = ~ (A|B);
    xor G2 (Y, B, C); or assign Y = B^C;
    and G3 (F, X, Y);
endmodule
```

[2 pt each] Correct input signals (A, B for X ; B, C for Y)
[1 pt each] Correct gate (NOR for X, XOR for Y)
[1 pt each] Correct syntax (module names, argument order, assign keyword)

