University of Washington – Computer Science & Engineering

Autumn 2016 Instructor: Justin Hsia 2016-11-01

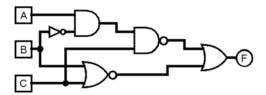
CSE 369 QUIZ 1

Name:	
UWNetID:	

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.


Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms & Verilog	11	
Total:	24	

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. [2 pts]

(B) Find a minimal implementation of the function below using only **2-input NOR** gates. [6 pts]

$$F = \overline{A}\overline{B}(C+D)$$

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

			P	A	
	0	0	0	X	
	1	1	X	1	
\mathbf{C}	1	X	1	0	$ ^{D}$
	X	0	0	0	
		—— F	3		

Question 3: Waveforms & Verilog [11 pts]

For both parts below, consider the following desired truth table and the Verilog simulated testbench waveforms shown below.

				input A ·0· ·		: :		
\mathbf{A}	В	\mathbf{C}	\mathbf{F}					• • •
0	0	0	0	input B ·0· ·			: :	
0	0	1	1				= ;;;	
0	1	0	0	input C ·O· ·	J∷L∵		::	
0	1	1	0	wire X ·1· ·	: : :			
1	0	0	0		· · · L			
1	0	1	1	wire Y·0··		: : : : :		
1	1	0	0					
1	1	1	1	output F ·O·	J∷L···			
				 t=0	 t=30	 t=60	 t=90	 t=120

- (A) Identify the time interval(s) where the testbench output does not match the desired functionality. Each horizontal tick represents 5 time units. [3 pts]
- (B) If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below based on the testbench output. [8 pts]

```
module Mystery (F, A, B, C);
  output F;
  input A, B, C;
  wire X, Y;

and G3 (F, X, Y);
endmodule
```