# University of Washington - Computer Science \& Engineering <br> Autumn 2020 Instructor: Justin Hsia 2020-11-03 <br> CSE 369 QUIZ 1 <br> Name: <br> Student ID <br> Number: <br> $\qquad$ <br> <br> Please do not turn the page until 11:30. 

 <br> <br> Please do not turn the page until 11:30.}

## Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.


## Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

| Question | Points | Score |
| :--- | :---: | :---: |
| (1) CL Gates | 8 |  |
| (2) K-map | 5 |  |
| (3) Waveforms \& Verilog | 12 |  |
| Total: | $\mathbf{2 5}$ |  |

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT})$ as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only 2 -input NOR gates.

We will only accept circuit diagrams. [6 pts]
$F=\overline{\mathrm{A}} \overline{\mathrm{B}}+\mathrm{C} \overline{\mathrm{D}}$

Question 2: Karnaugh Maps [5 pts]
Find the minimum sum-of-products solution for the K-map shown below.


## Question 3: Waveforms \& Verilog [12 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]


```
module Mystery (F, A, B, C);
    output logic F;
    input logic A, B, C;
    logic X, Y;
```

$\qquad$
$\qquad$ ;
xnor G3 (F, X, Y);
endmodule
(B) We only have the 2-input logic gates at right available to us. Given the logic delays shown,

| XOR | NAND | OR |
| :---: | :---: | :---: |
| 6 ns | 7 ns | 10 ns | draw out the circuit diagram of the fastest implementation of the Verilog statement below. [5 pts]

Hint: Build a truth table first.

```
assign F = B ^ (~A | B);
```

