University of Washington - Computer Science \& Engineering
 Spring 2018 Instructor: Justin Hsia 2018-04-24
 CSE 369 QUIZ 1

Name: _Perry_Perfect______
UWNetID: _perfect

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	11	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT})$ as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$
\begin{array}{rlrl}
\mathbf{F} & =\overline{(\overline{\mathbf{A}+\mathbf{C}})(\mathbf{B}+\mathbf{A} \overline{\mathbf{C}})} \\
\mathrm{X} & =\mathrm{A} \overline{\mathrm{C}} & & {[0.5 \mathrm{pt}]} \\
\mathrm{Y} & =\overline{\mathrm{A}+\mathrm{C}} & & {[0.5 \mathrm{pt}]} \\
\mathrm{Z} & =\mathrm{B}+\mathrm{X} & & {[0.5 \mathrm{pt}]} \\
\mathrm{F} & =\overline{\mathrm{YZ}} & & {[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2-input NOR gates. We will only accept circuit diagrams. [6 pts]
$F=(\overline{\mathrm{A}+\mathrm{B}})(\overline{\overline{\mathrm{CD}}})$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's applications (either in expression or gates)
[2 pt] Conversion of extra
NOT to NANDs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

$=A D+\bar{B} C+B \bar{C} D$
[2 pt] X choices
[1 pt each] correct term/grouping
[-0.5 pt each] smaller grouping used
[-0.5 pt each] extra grouping included

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]


```
module Mystery (F, A, B, C);
    output F;
    input A, B, C;
    wire X, Y;
    xnor G1 (X, B, C); or assign X = ~(B ^ C);
    or G2 (Y, A, B); or assign Y = A | B;
    nand G3 (F, X, Y);
endmodule
```

(B) The snippet below is from a Verilog testbench. Draw out the waveforms. [4 pts]

```
reg [1:0] S;
initial begin
    S = 2'b10; #10; S[0] = 1; #20; S = ~S; #30;
    S = {~S[0],~(S[1]^S[1])}; #10;
end
```


