University of Washington - Computer Science \& Engineering
 Spring 2019 Instructor: Justin Hsia 2019-04-30
 CSE 369 QUIZ 1

Name: _Perry_Perfect______
UWNetID: _perfect

Please do not turn the page until 11:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	11	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT})$ as well as any necessary parentheses to make your answer unambiguous. $[2 \mathrm{pts}] \quad \mathbf{F}=\overline{\overline{(\mathbf{A}+\mathbf{C})}} \cdot \overline{\mathbf{A}(\mathbf{B}+\mathbf{C})}$

$$
\begin{array}{ll}
\mathrm{X}=\overline{\overline{(\mathrm{A}+\mathrm{C})}}=(\mathrm{A}+\mathrm{C}) & {[0.5 \mathrm{pt}]} \\
\mathrm{Y}=\mathrm{B}+\mathrm{C} & {[0.5 \mathrm{pt}]} \\
\mathrm{Z}=\overline{\mathrm{AY}} & {[0.5 \mathrm{pt}]} \\
\mathrm{F}=\mathrm{XZ} & {[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2-input NAND gates. We will only accept circuit diagrams. [6 pts]

$$
F=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \overline{\mathrm{C}}+\mathrm{D}
$$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's
applications (either in
expression or gates)
[2 pt] Conversion of extra
NOTs to NANDs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [5 pt]

(B) We only have the 2-input logic gates at right available to us. Given the logic delays shown,

XOR	NAND	NOR
6 ns	8 ns	12 ns

Hint: Build a truth table first.

```
assign F = ~A & (A ^ B);
```


$F=\bar{A} B$

