University of Washington - Computer Science \& Engineering

Spring 2020 Instructor: Clarice Larson 2020-04-28

CSE 369 QUIZ 1

Name: \qquad
UWNetID: \qquad

Please do not turn the page until 11:40.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is open book and open notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms \& Verilog	11	
Total:	$\mathbf{2 4}$	

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use + (OR), \cdot (AND), and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only 2-input NAND gates. We will only accept circuit diagrams. [6 pts]
$F=(\overline{\overline{\mathrm{A}}+\mathrm{B}})+\overline{\mathrm{C}} \mathrm{D}$

Question 2: Karnaugh Maps [5 pts]
Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [8 pt]


```
module Mystery (F, A, B, C);
    output logic F;
    input logic A, B, C;
    logic X, Y;
```

 nand G3 (\(\mathrm{F}, \mathrm{X}, \mathrm{Y}\));
 endmodule
(B) Given the Verilog module Circuit below, assume the logic delays shown. If the values of inputs A and B first become known at $t=0$ and output F is unknown at $t=0$, at what time will you know the

XOR	NOR	NOT
20 ns	8 ns	4 ns

```
module Circuit (F, A, B);
    output logic F;
    input logic A, B;
    assign F = ~ (~ (A | ~B) | (A ^ B));
endmodule
```

```
t=
```

