University of Washington - Computer Science \& Engineering Spring 2021 Instructor: Clarice Larson 2021-04-27

Name: _Molly_Model \qquad
UWNetID: _model \qquad

Please do not turn the page until 11:40.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is open book and open notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	$\mathbf{1 1}$	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use + (OR), \cdot (AND), and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts] $\quad \mathbf{F}=\overline{((\mathbf{A}+\overline{\mathbf{B}}) \cdot \mathbf{C})+(\overline{\mathbf{C} \cdot \mathbf{D}})}$

$\mathrm{X}=\mathrm{A}+\overline{\mathrm{B}}$	$[0.5 \mathrm{pt}]$
$\mathrm{Y}=\overline{\mathrm{C} \cdot \mathrm{D}}$	$[0.5 \mathrm{pt}]$
$\mathrm{Z}=\mathrm{X} \cdot \mathrm{C}$	$[0.5 \mathrm{pt}]$
$\mathrm{F}=\overline{\mathrm{Y}+\mathrm{Z}}$	$[0.5 \mathrm{pt}]$

(B) Find a minimal implementation of the function below using only 2-input NOR gates. We will only accept circuit diagrams. [6 pts]

$$
F=(\overline{A \cdot \bar{B}}) \cdot(C+D)
$$

[3 pt] Valid gate conversion from
 expression
[2 pt] DeMorgan's applications (either in expression or gates)
[1 pt] Conversion of extra NOTs to NANDs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

$$
F=C D+\bar{A} D+A \bar{B} \bar{D}
$$

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [8 pts]


```
module Mystery (F, A, B, C);
    output logic F;
    input logic A, B, C;
    logic X, Y;
    or G1 (X, A, B); or assign X = A | B;
    nor G2 (Y, B, C); or assign Y = ~(B | C);
    and G3 (F, X, Y);
endmodule
```

(B) Given the Verilog module Circuit below, assume the logic delays shown. If the values of inputs A and B first become known at $t=O$ and output F is unknown at $t=0$, at what time will you know the value of F ? [3 pts]

XOR	NAND	NOT
10 ns	8 ns	4 ns

```
module Circuit (F, A, B);
    output logic F;
    input logic A, B;
    assign F = ~(~(~A & B) & (A ^ B));
endmodule
```


