University of Washington – Computer Science & Engineering

Spring 2021 Instructor: Clarice Larson 2021-04-27

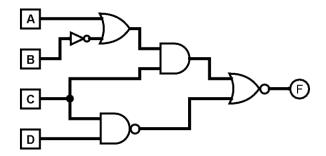
CSE 369 QUIZ 1

Name:	 	 	
UWNetID:			

Please do not turn the page until 11:40.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is open book and open notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- You have 20 minutes to complete this quiz.


Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

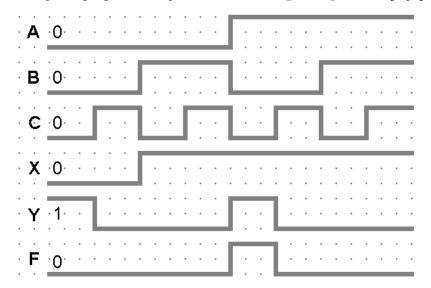
Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms & Verilog	11	
Total:	24	

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify.*Remember to use + (OR), · (AND), and ⁻ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only **2-input NOR gates**. *We will only accept circuit diagrams*. [6 pts]

$$F = \left(\overline{A \cdot \overline{B}}\right) \cdot (C + D)$$


Question 2: Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

				A	
	0	0	0	1	
	1	X	0	0	
_	1	1	X	1	D
С	0	X	0	X	-
·			3	•	•

Question 3: Waveforms & Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [8 pt]


```
module Mystery (F, A, B, C);
  output logic F;
  input logic A, B, C;
  logic X, Y;

and G3 (F, X, Y);
endmodule
```

(B) Given the Verilog module Circuit below, assume the logic delays shown and no other simplification. If the values of inputs A and B first become known at t = 0 and output F is unknown at t = 0, at what time will you know the value of F? [3 pts]

XOR	NAND	NOT
10 ns	8 ns	4 ns

```
module Circuit (F, A, B);
  output logic F;
  input logic A, B;

assign F = ~(~(~A & B) & (A ^ B));
endmodule
```

t =