University of Washington - Computer Science \& Engineering
Spring 2022 Instructor: Mark Wyse 2022-04-26
CSE 369 QUIZ 1
Name:
SOLUTIONS
Student ID
Number:
\qquad
\qquad
Please do not turn the page until 12:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $20(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms \& Verilog	12	
Total:	25	

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use + (OR), \cdot (AND), and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$
\begin{array}{ll}
\mathbf{F}=\overline{\overline{\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}}+(\overline{\mathbf{B}}+\mathbf{A} \cdot \mathbf{C})} \\
\mathrm{X}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}} & {[0.5 \mathrm{pts}]} \\
\mathrm{Y}=\mathrm{A} \cdot \mathrm{C} & {[0.5 \mathrm{pts}]} \\
\mathrm{Z}=\overline{\mathrm{B}}+\mathrm{Y} & {[0.5 \mathrm{pts}]} \\
\mathrm{F}=\overline{\mathrm{X}+\mathrm{Z}} & {[0.5 \mathrm{pts}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2-input NAND gates. We will only accept circuit diagrams. [6 pts]

$$
\begin{array}{ll}
\mathrm{F}=\overline{\overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A} \mathrm{D}}} \begin{array}{l}
2 \text { pts - Valid gate conversion from expression } \\
2 \text { pts - DeMorgan's applications } \\
\\
2 \text { pts - Conversion of NOTs to NANDs }
\end{array}
\end{array}
$$

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.
C

$$
\mathrm{F}=\overline{\mathrm{A}} \overline{\mathrm{C}}+\overline{\mathrm{B}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BD}
$$

[2 pts] X choices [1 pts] per correct term / grouping [- 0.5 pts each] smaller grouping used [- 0.5 pts each] extra grouping included

Question 3: Waveforms \& Verilog [12 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [6 pts]

For both X and Y :
[2 pts] Correct input signals
[1 pts] Correct gate
Overall:
[-0.5 pts] correct Verilog syntax


```
module Mystery (
    output logic F
    ,input logic A, B, C
    );
    logic X, Y;
    nand G1 (X, A, C); // assign X = ~(A & C);
    or G2 (Y, X, B); // assign Y = X | B;
    xnor G3 (F, X, Y);
endmodule
```

(B) Complete the implementation of a 2:1 Multiplexer in the module definition given below, using structural Verilog. [2 pts]

```
module mux2_1 (output logic out, input logic a, b, sel);
    assign out = (a & ~sel) | (b & sel);
endmodule
```

(C) What is the width of the signal bus in the Verilog statement: logic [N-2:0] bus; [1 pts]
N-1 bits
(D) Write a Verilog statement that replicates the least significant 3 bits of the bus signal above twice and pads the result with zeros to create a 10-bit signal, which is assigned to F below. [2 pts]

```
assign F = {4'b0000, {2{bus[2:0]}}};
```

(E) Verilog uses 4-state values for variables. What does the \mathbf{X} state represent? [1 pts] Undefined, unknown, uninitialized, or contention (conflict)

