University of Washington - Computer Science \& Engineering
 Spring 2023 Instructor: Justin Hsia 2023-04-25
 CSE 369 QUIZ 1

Name: _Molly_Model
Student ID
Number: _1234567

Please do not turn the page until 2:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $20(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	13	13
Total:	$\mathbf{2 6}$	$\mathbf{2 6}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use $+(O R), \cdot($ AND $)$, and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$
\mathbf{F}=(\overline{\mathbf{A}+\mathbf{B}}+\overline{\mathbf{C}}) \overline{\mathbf{B}}
$$

$$
\begin{array}{ll}
\mathrm{X}=\overline{\mathrm{A}+\mathrm{B}} & {[0.5 \mathrm{pt}]} \\
\mathrm{Y}=\mathrm{X}+\overline{\mathrm{C}} & {[0.5 \mathrm{pt}]} \\
\mathrm{Z}=\overline{\mathrm{B} \overline{\mathrm{C}}} & {[0.5 \mathrm{pt}]} \\
\mathrm{F}=\mathrm{YZ} & {[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2 -input NOR gates. We will only accept circuit diagrams. [6 pts]

$$
F=\overline{\overline{\mathrm{A}} \overline{\bar{B}}}+\overline{\mathrm{C}} \overline{\mathrm{D}}
$$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's applications
(either in expression or gates)
[2 pt] Conversion of extra NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [13 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]

(B) A testbench for the Mystery module (with inputs A, B, C) is shown below. Which input combinations are NOT currently being tested? You may not need all of the blanks. [3 pts]

```
module Mystery_testbench ();
    logic F, A, B, C;
    initial begin
        \#10; // XXX
        \(A=0 ; B=0 ; C=0 ; \# 10 ; / / 000\)
        \(A=1 ; \quad \# 10 ; / / 100\)
            B = 1; \#10; // 110
            C = 1; \#10; // 111
        \(\mathrm{A}=0 ; \mathrm{B}=0 ; \quad\) \#10; // 001
            B = 1; C = 0; \#10; // 010
            B = 0; \#10; // 000
        A \(=1 ; \quad \# 10 ; ~ / / 100\)
    end
endmodule
```

Missing combinations:

1. $\{A, B, C\}=3 ' b 011$;
2. $\{A, B, C\}=3 ' b 101$;
3. $\{A, B, C\}=3 ' b$ \qquad ;
4. $\{A, B, C\}=3 ' b$ \qquad ;
(C) Circle the value of A at the beginning of the simulation of Mystery_testbench: [1 pt]
0
1
X
Z
(D) Give a brief piece of advice on how to improve the above testbench. [2 pts]

Many acceptable answers here:

- Use a for-loop (from 0 to 7) to guarantee going through all combinations.
- Go through combinations more systematically (e.g., $000 \rightarrow 001 \rightarrow 002 \rightarrow$...).
- Explicitly write out the A, B, and C values on each line for readability.
- Define signals from the start (i.e., eliminate the first \#10;).

