University of Washington - Computer Science & Engineering

Spring 2023 Instructor: Justin Hsia 2023-04-25

CSE 369 QUIZ 1

Name:	
Student ID Number:	

Please do not turn the page until 2:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 (+5) minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms & Verilog	13	
Total:	26	

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify.*Remember to use + (OR), · (AND), and ⁻ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only **2-input NOR gates**. *We will only accept circuit diagrams*. [6 pts]

$$F = \overline{\overline{A}}\overline{\overline{B}} + \overline{\overline{C}}\overline{\overline{D}}$$

Question 2: Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

			A	A	
	X	1	1	1	
	X	0	0	1	
С	0	1	X	0	ט
	0	0	X	0	
			3	•	-

Question 3: Waveforms & Verilog [13 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]


```
module Mystery (F, A, B, C);
  output logic F;
  input logic A, B, C;
  logic X, Y;

    _____;
  xor G3 (F, X, Y);
  endmodule
```

(B) A testbench for the Mystery module (with inputs A, B, C) is shown below. Which input combinations are NOT currently being tested? You may not need all of the blanks. [3 pts]

```
module Mystery_testbench ();
   logic F, A, B, C;
   initial begin
                             #10;
      A = 0; B = 0; C = 0; #10;
      A = 1;
                             #10;
              B = 1;
                             #10;
                     C = 1; #10;
      A = 0; B = 0;
                             #10;
             B = 1; C = 0; #10;
              B = 0;
                             #10;
      A = 1;
                             #10;
   end
endmodule
```

Missing combinations:						
1.	{A,	В,	C }	=	3'b;	
2.	{A,	В,	C }	=	3'b;	
3.	{A,	В,	C }	=	3'b;	
4.	{A,	В,	C }	=	3'b;	

(C) Circle the value of A at the beginning of the simulation of Mystery_testbench: [1 pt]

0 1 X Z

(D) Give a brief piece of advice on how to improve the above testbench. [2 pts]

