University of Washington - Computer Science \& Engineering
Spring 2023 Instructor: Justin Hsia 2023-04-25
CSE 369 QUIZ 1
Name: \qquad
Student ID
Number: \qquad
Please do not turn the page until 2:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $20(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms \& Verilog	13	
Total:	$\mathbf{2 6}$	

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use + (OR), \cdot (AND), and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only 2 -input NOR gates. We will only accept circuit diagrams. [6 pts]
$F=\overline{\overline{\mathrm{A}} \overline{\mathrm{B}}}+\overline{\mathrm{C}} \overline{\mathrm{D}}$

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [13 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]

module Mystery (F, A, B, C);
module Mystery (F, A, B, C);
output logic F;
output logic F;
input logic A, B, C;
input logic A, B, C;
logic X, Y;
logic X, Y;
\qquad ;
\qquad
xor G3 (F, X, Y);
endmodule
(B) A testbench for the Mystery module (with inputs A, B, C) is shown below. Which input combinations are NOT currently being tested? You may not need all of the blanks. [3 pts]

```
module Mystery_testbench ();
    logic F, A, B, C;
    initial begin
            A = 0; B = 0; C = 0; #10;
            A = 1; #10;
            B = 1; #10;
                    C = 1; #10;
            A = 0; B = 0; #10;
            B = 1; C = 0; # 10;
            B = 0; #10;
            A = 1; #10;
    end
endmodule
```

Missing combinations:

1. $\{A, B, C\}=3^{\prime} b$ \qquad ;
2. $\{A, B, C\}=3^{\prime} b$ \qquad ;
3. $\{A, B, C\}=3^{\prime} b$ \qquad ;
4. $\{A, B, C\}=3^{\prime} b$ \qquad ;
(C) Circle the value of A at the beginning of the simulation of Mystery_testbench: [1 pt]
\odot
1
X
Z
(D) Give a brief piece of advice on how to improve the above testbench. [2 pts]
\square
