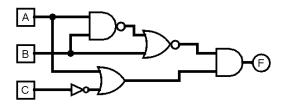


Please do not turn the page until 2:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 (+5) minutes to complete this quiz.

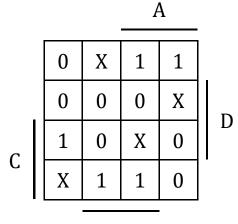

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms & Verilog	13	
Total:	26	

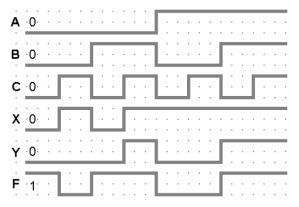
Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify*.
 Remember to use + (OR), · (AND), and ⁻ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]



(B) Find a minimal implementation of the function below using only **2-input NOR gates**. *We will only accept circuit diagrams.* [6 pts]

 $\mathbf{F} = (\mathbf{A} + \mathbf{B})(\overline{\mathbf{CD}})$


Question 2: Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

Question 3: Waveforms & Verilog [13 pts]

(A) Consider the Verilog simulated test bench waveforms shown. Assume all delays are set to 0.
 If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]

The following table will be used for both Part B and Part C:

output	stery (F, logic F; logic A, X,	В,	-	C);
xnor	G3 (F, X	. Y):	

endmodule

А	В	С	F	Match?	Tested?
0	0	0	1		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	1		
1	1	1	0		

- (B) The F column shows the intended/desired functionality of the signal F. Complete the Match? column with Y/N to identify whether the waveform above matches the desired functionality. [2 pts]
- (C) A test bench for the Mystery module (with inputs A, B, C) is shown on the right. Complete the Tested? column with Y/N to verify which combinations are currently being tested. [4 pts]

```
module Mystery_tb ();
   logic F, A, B, C;
   initial begin
                            #10;
      A = 1; B = 1; C = 1; #10;
                     C = 0; #10;
             B = 0; C = 1; #10;
      A = 1;
                            #10;
                     C = 0; #10;
      A = 0;
                     C = 1; #10;
                     C = 0; #10;
             B = 1;
                            #10;
   end
endmodule
```

;

;