University of Washington - Computer Science \& Engineering
 Winter 2017 Instructor: Justin Hsia 2017-01-31
 CSE 369 QUIZ 1

Name: _Perry_Perfect______
UWNetID: _perfect

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	11	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT}) .[2 \mathrm{pts}] \mathbf{F}=(\overline{\overline{\mathbf{A B}}+\mathbf{C}})(\mathbf{B}+\overline{\mathbf{C}})$

$$
\begin{array}{ll}
\mathrm{X}=\overline{\mathrm{AB}} & {[0.5 \mathrm{pt}]} \\
\mathrm{Y}=\overline{\mathrm{X}+\mathrm{C}} & {[0.5 \mathrm{pt}]} \\
\mathrm{Z}=\mathrm{B}+\overline{\mathrm{C}} & {[0.5 \mathrm{pt}]} \\
\mathrm{F}=\mathrm{YZ} & {[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2-input NAND gates. [6 pts]

$$
F=A B+(\overline{C+D})
$$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's applications (either in expression or gate)
[2 pt] Conversion of extra NOTs to NANDs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

[2 pt] X choices: 1, 0, 0, 1
[1 pt each] correct term/grouping
[-0.5 pt each] smaller grouping used

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [8 pt]


```
module Mystery (F, A, B, C);
    output F;
    input A, B, C;
    wire X, Y;
    nand G1 (X, A, C); or assign X = ~(A & C);
    or G2 (Y, B, C); or assign Y = B | C;
    and G3 (F, X, Y);
endmodule
```

(B) Given the Verilog module Circuit below, assume that all gates (only 1- and 2-input) have a delay of 30 ns . If the values of inputs A and B first become known at $t=0$ and output F is unknown at $t=0$, at what time does F first become known? [3 pts]

```
module Circuit (F, A, B);
    output F;
    input A, B;
    assign F = (~A & B) | (A ^ B);
endmodule
```


$$
t=90 \mathrm{~ns}
$$

