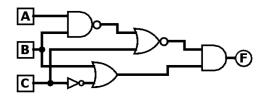
University of Washington – Computer Science & Engineering				
7	Winter 2017	Instructor: Justin Hsia	2017-01-31	
C	SE	369 Q	UIZ 1	
Name:				
UWNetID:				
	Please do	not turn the page un	til 10:30.	

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

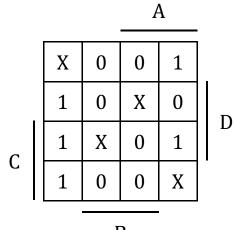

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms & Verilog	11	
Total:	24	

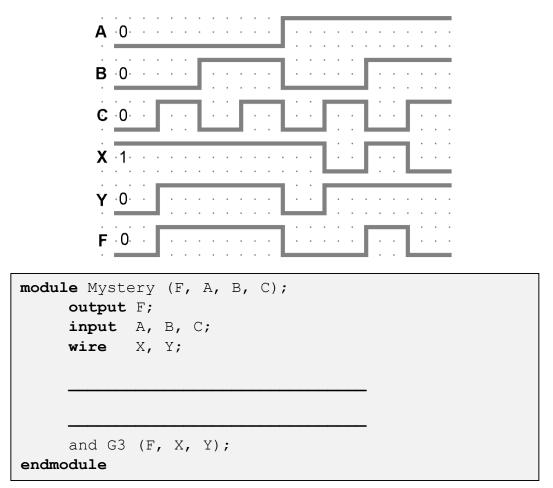
Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify*. Remember to use + (OR), \cdot (AND), and - (NOT). [2 pts]



(B) Find a minimal implementation of the function below using only 2-input NAND gates.[6 pts]

$$F = AB + (\overline{C+D})$$


Question 2: Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

Question 3: Waveforms & Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [8 pt]

(B) Given the Verilog module Circuit below, assume that all gates (only 1- and 2-input) have a delay of 30 ns. If the values of inputs A and B first become known at t = 0 and output F is unknown at t = 0, at what time does F first become known? [3 pts]

```
module Circuit (F, A, B);
    output F;
    input A, B;
    assign F = (~A & B) | (A ^ B);
endmodule
```

t =