University of Washington - Computer Science & Engineering

Winter 2018 Instructor: Justin Hsia 2018-01-30

CSE 369 QUIZ 1

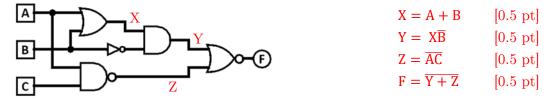
Name:	_Perry	_Perfect
-------	--------	----------

UWNetID: _perfect_____

Please do not turn the page until 10:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

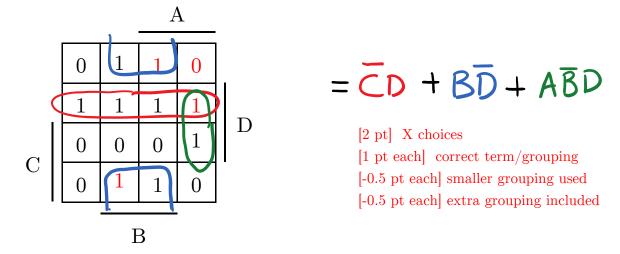

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms & Verilog	11	11
Total:	24	24

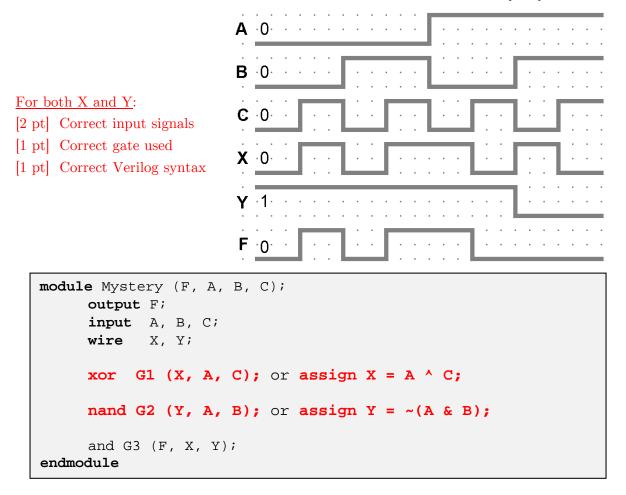
Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use + (OR), \cdot (AND), and $\overline{}$ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts] $\mathbf{F} = \overline{(\mathbf{A} + \mathbf{B})} \, \overline{\mathbf{B}} + \overline{\mathbf{AC}}$



(B) Find a minimal implementation of the function below using only **2-input NAND** gates. We will only accept circuit diagrams. [6 pts]

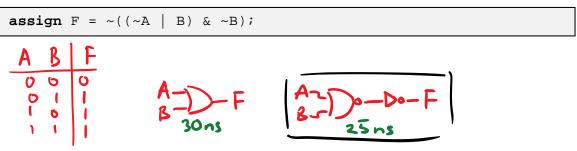
$$F = \overline{A} + B + CD$$
[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's applications (either in expression or gates)
[2 pt] Conversion of extra NOTs to NANDs


Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms & Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]



(B) Our DE1-SoC is broken and we only have the 1or 2-input logic gates shown at right available to us. Given the logic delays shown, draw out the

NOT	OR	NOR
5 ns	30 ns	20 ns

circuit diagram of the fastest implementation of the Verilog statement below. [4 pts]

<u>Hint</u>: How many inputs are there? How many gates do you think you'll need?

