University of Washington - Computer Science \& Engineering
 Winter 2020 Instructor: Justin Hsia 2020-02-04

 Name: _Perry_Perfect
 \qquad
 Student ID
 Number: _1234567
 \qquad

 Please do not turn the page until 11:30.

 Please do not turn the page until 11:30.}

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	11	11
Total:	$\mathbf{2 4}$	$\mathbf{2 4}$

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT})$ as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$
\begin{array}{ll}
\mathbf{F}=\overline{(\mathbf{A}+\mathbf{B}) \overline{\mathbf{C}}(\overline{\mathbf{B}+\mathbf{C}})} \\
\mathrm{X}=\mathrm{A}+\mathrm{B} & {[0.5 \mathrm{pt}]} \\
\mathrm{Y}=\overline{\mathrm{B}} \mathrm{X} & {[0.5 \mathrm{pt}]} \\
\mathrm{Z}=\overline{\mathrm{B}+\mathrm{C}} & {[0.5 \mathrm{pt}]} \\
\mathrm{F}=\overline{\mathrm{YZ}} & {[0.5 \mathrm{pt}]}
\end{array}
$$

(B) Find a minimal implementation of the function below using only 2 -input NOR gates. We will only accept circuit diagrams. [6 pts]

$$
F=\overline{(\mathrm{A}+\mathrm{B}) \overline{\overline{\mathrm{C}}}}
$$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's
applications (either in expression or gates)
[2 pt] Conversion of extra
NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]


```
module Mystery (F, A, B, C);
    output F;
    input A, B, C;
    wire X, Y;
    nand G1 (X, B, C); or assign X = ~ (B & C);
    xnor G2 (Y, A, X); or assign Y = ~(A ^ X);
    and G3 (F, X, Y);
endmodule
```

(B) The snippet below is from a Verilog testbench. Draw out the waveforms. [4 pts]

```
logic [1:0] S;
initial begin
    S = 2'b00; #30; S[1] = 1; #10; S = S | 2'b01; #40;
    S = {S[0] ^ S[1], S[0] & S[1]}; #40;
end
```


