University of Washington - Computer Science & Engineering

Winter 2020 Instructor: Justin Hsia 2020-02-04

Name: _Perry_Perfect____

Student ID

Number: _1234567

Please do not turn the page until 11:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms & Verilog	11	11
Total:	24	24

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use + (OR), \cdot (AND), and $^-$ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts] $\mathbf{F} = \overline{(\mathbf{A} + \mathbf{B})\overline{\mathbf{C}}(\overline{\mathbf{B} + \mathbf{C}})}$

 $X = A + B \qquad [0.5 \text{ pt}]$ $Y = \overline{B}X \qquad [0.5 \text{ pt}]$ $Z = \overline{B} + \overline{C} \qquad [0.5 \text{ pt}]$ $F = \overline{YZ} \qquad [0.5 \text{ pt}]$

(B) Find a minimal implementation of the function below using only **2-input NOR gates**.

We will only accept circuit diagrams. [6 pts]

$$F = \overline{(A + B)\overline{\overline{C}D}}$$

- [2 pt] Valid gate conversion from expression
- [2 pt] DeMorgan's applications (either in expression or gates)
- [2 pt] Conversion of extra NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

A						
	0	0	0	0		
С	1	1	1	1	$\Big \Big _{\mathcal{D}}$	$= \overline{C}D + \overline{A}D + \overline{B}D$
	1	1	0		. 5	[2 pt] X choices[1 pt each] correct term/grouping[-0.5 pt each] smaller grouping used
	0	0	0	0		
	B			-		[-0.5 pt each] extra grouping included

Question 3: Waveforms & Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]

(B) The snippet below is from a Verilog testbench. Draw out the waveforms. [4 pts]

```
logic [1:0] S;
initial begin
  S = 2'b00; #30; S[1] = 1; #10; S = S | 2'b01; #40;
  S = {S[0] ^ S[1], S[0] & S[1]}; #40;
end
```

