#### University of Washington - Computer Science & Engineering

Winter 2020 Instructor: Justin Hsia 2020-02-04

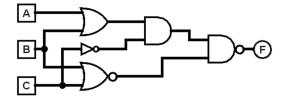
# **CSE 369 QUIZ 1**

| Name:                 |  |
|-----------------------|--|
| Student ID<br>Number: |  |

## Please do not turn the page until 11:30.

#### Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 minutes to complete this quiz.


#### Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

| Question                | Points | Score |
|-------------------------|--------|-------|
| (1) CL Gates            | 8      |       |
| (2) K-map               | 5      |       |
| (3) Waveforms & Verilog | 11     |       |
| Total:                  | 24     |       |

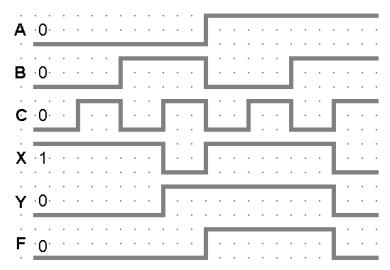
## Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify. Remember to use + (OR),  $\cdot$  (AND), and  $^-$  (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]



(B) Find a minimal implementation of the function below using only **2-input NOR gates**. We will only accept circuit diagrams. [6 pts]

$$F = \overline{(A+B)\overline{\overline{C}D}}$$

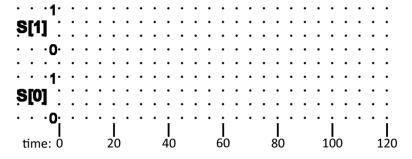

## Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

|              | X | 0 | 0 | 0 |   |
|--------------|---|---|---|---|---|
| $\mathbf{C}$ | 1 | 1 | 1 | X |   |
|              | X | 1 | 0 | 1 |   |
|              | 0 | 0 | 0 | X | - |
| -            |   | I | 3 |   | • |

### Question 3: Waveforms & Verilog [11 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]




```
module Mystery (F, A, B, C);
  output F;
  input A, B, C;
  wire X, Y;

and G3 (F, X, Y);
endmodule
```

(B) The snippet below is from a Verilog testbench. Draw out the waveforms. [4 pts]

```
logic [1:0] S;
initial begin
  S = 2'b00; #30; S[1] = 1; #10; S = S | 2'b01; #40;
  S = {S[0] ^ S[1], S[0] & S[1]}; #40;
end
```

