University of W ashington - Computer Science \& Engineering Winter 2022 Instructor: Justin Hsia 2022-02-01

 Name: _Perry_Perfect
 Student ID
 Number: _1234567
 Please do not turn the page until 12:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $20(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms \& Verilog	12	12
Total:	25	25

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use $+(\mathrm{OR}), \cdot(\mathrm{AND})$, and ${ }^{-}(\mathrm{NOT})$ as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$
\begin{aligned}
& \mathbf{F}=\overline{(\mathbf{A} \cdot \overline{\mathbf{B}})+(\mathbf{B}+\overline{\mathbf{A} \cdot \mathbf{C}})} \\
& \mathrm{X}=\mathrm{A} \cdot \overline{\mathrm{~B}} {[0.5 \mathrm{pt}] } \\
& \mathrm{Y}=\overline{\mathrm{A} \cdot \mathrm{C}} {[0.5 \mathrm{pt}] } \\
& \mathrm{Z}=\mathrm{B}+\mathrm{Y} {[0.5 \mathrm{pt}] } \\
& \mathrm{F}=\overline{\mathrm{X}+\mathrm{Z}} {[0.5 \mathrm{pt}] }
\end{aligned}
$$

(B) Find a minimal implementation of the function below using only 2-input NOR gates. We will only accept circuit diagrams. [6 pts]

$$
F=\overline{(\mathrm{A}+\mathrm{B}) \overline{\overline{\mathrm{C}} \mathrm{D}}}
$$

[2 pt] Valid gate conversion from expression
[2 pt] DeMorgan's
applications (either in
expression or gates)
[2 pt] Conversion of extra
NOTs to NORs

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [12 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pt]


```
module Mystery (F, A, B, C);
    output F;
    input A, B, C;
    wire }\textrm{X},\textrm{Y}
    nor G1 (X, A, C); or assign X = ~(A | C);
    and G2 (Y, B, X); or assign Y = B & X;
    xnor G3 (F, X, Y);
endmodule
```

(B) We only have the 2-input logic gates at right available to us. Given the logic delays shown,

XOR	NAND	OR
6 ns	7 ns	10 ns

Hint: Build a truth table first.

```
assign F = B ^ (~A | B);
```

A	B	$\sim A \mid B$	F
0	0	1	1
0	1	1	0
1	0	0	0
1	1	1	0
$F=\overline{A+B}$			

