University of Washington - Computer Science \& Engineering
 Winter 2024 Instructor: Justin Hsia 2024-01-30
 CSE 369 QUIZ 1

Name: \qquad
Student ID
Number: \qquad
Please do not turn the page until 12:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $20(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	
(2) K-map	5	
(3) Waveforms \& Verilog	13	
Total:	$\mathbf{2 6}$	

Question 1: Combinational Logic Gates [8 pts]
(A) Write out a Boolean expression for the circuit diagram below. No need to simplify.

Remember to use + (OR), \cdot (AND), and ${ }^{-}$(NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

(B) Find a minimal implementation of the function below using only 2-input NAND gates. We will only accept circuit diagrams. [6 pts]

$$
\mathrm{F}=\overline{\mathrm{AB}}+(\overline{\overline{\mathrm{C}}+\mathrm{D}})
$$

Question 2: Karnaugh Maps [5 pts]

Find the minimum sum-of-products solution for the K-map shown below.

Question 3: Waveforms \& Verilog [13 pts]

(A) Consider the Verilog simulated testbench waveforms shown. Assume all delays are set to 0 . If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]

(B) A testbench for the Mystery module (with inputs A, B, C) is shown below. Which input combinations are NOT currently being tested? You may not need all of the blanks. [3 pts]

```
module Mystery_tb ();
    logic F, A, B, C;
    initial begin
        #10;
        A = 0; B = 0; C = 0; #10;
            C = 1; #10;
            B = 1; #10;
        A = 1; #10;
            C = 0; #10;
            A = 0; }\quadC=1; #10
            C = 0; #10;
            B = 0; #10;
    end
endmodule
```

(C) Complete the SystemVerilog code below that creates a bus called my_bus that is a collection of various DE1-SoC inputs and outputs. Specifically, it should contain the first (i.e., 0th) of each of SW, KEY, LEDR, and HEX in that order from most significant to least significant.
Hint: How many bits in a HEX display? [3 pt]
\square

