University	of Washing	$\operatorname{gton}-\operatorname{Comp}$	outer Scienc	e & Engin	eering
Spring	g 2017 In	nstructor: Jus	tin Hsia	2017-05-16	3
CS	SE 3	869	QU	μZ	2
Name:					
UWNetID:					

Please do not turn the page until 10:30.

Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 25 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) SL & Timing	6	
(2) FSM Implementation	10	
(3) FSM Design	10	
Total:	26	

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with $t_{setup} = 50$ ps (10^{-12} s) , $t_{hold} = 20$ ps, $t_{C2Q} = 70$ ps, $t_{NOT} = 15$ ps, $t_{OR} = 80$ ps, and $t_{XOR} = 100$ ps. Consider each part below *independently* and fill in your answers in the boxes below, making sure to *include units*.

(A) If the input In changes exactly on clock triggers, what is the minimum clock period that we can use and still ensure proper behavior? [4 pts]

(B) If the input In changes 10 ps after each clock trigger, what is the minimum t_{XOR} delay we need to prevent a *hold time violation*? [2 pts]

Question 2: Finite State Machine Implementation [10 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

\mathbf{PS}_1	\mathbf{PS}_{0}	In	NS_1	\mathbf{NS}_{0}	\mathbf{Out}_1	\mathbf{Out}_0
0	0	0		0	0	0
0	0	1		1	0	0
0	1	0		1	0	1
0	1	1		1	0	1
1	0	0	Х	Х	Х	
1	0	1	Х	Х	Х	
1	1	0	0	0	1	
1	1	1	1	1	1	

(B) Complete the circuit diagram below using *minimal logic* based on the truth table shown below. You are welcome to use 2- and 3-input logic gates. [8 pts]

\mathbf{PS}	In_1	In_0	\mathbf{NS}	Out
0	0	0	1	1
0	0	1	0	1
0	1	0	Х	Х
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	Х	Х
1	1	1	1	0

Question 3: Finite State Machine Design [10 pts]

(A) If we have an FSM with five states and a transition arrow from each state to all the other states (20 transitions total), how many bits does our system require? [2 pt]

State Bits:	Input Bits:
-------------	-------------

(B) The following FSM takes a stream of inputs and removes the *second* 1 from every consecutive string of 1's.

Input: 1 0 1 1 0 1 1 1 0 1 1 1 1 Output: 1 0 1 0 0 1 0 1 0 1 0 1 1

Complete the testbench initial block to *thoroughly* test the FSM. You are welcome to fill out the Verilog comments to help you keep track of state, but these will not be graded. [3 pts]

```
initial begin
                    In <= 1;
                                   // state:
                                               00
   @(posedge clk);
                    In <= ____
                               ;
                                   // state: _
   @(posedge clk);
                    In <= 0;
                                   // state: _
  @(posedge clk);
                    In <= 1;
                                   // state:
   @(posedge clk);
                    In <= _
                               ;
                                   // state: _
                                   // state: ____
   @(posedge clk);
                    In <= 1;
   @(posedge clk);
                    In <= ;
                                   // state:
   @(posedge clk);
                                   // state:
   $stop();
end
```

(C) Draw a state diagram for an FSM that removes the *third* 1 from every consecutive string of 1's: [5 pt]