University of Washington - Computer Science \& Engineering

Spring 2017 Instructor: Justin Hsia 2017-05-16
CSE 369 QUIZ 2

Name:
 UWNetID:

Please do not turn the page until 10:30.

Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 25 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) SL \& Timing	6	
(2) FSM Implementation	10	
(3) FSM Design	10	
	Total:	$\mathbf{2 6}$

Question 1: Sequential Logic \& Timing [6 pts]

Consider the following circuit diagram with $t_{\text {setup }}=\mathbf{5 0} \mathbf{~ p s}\left(10^{-12} \mathrm{~s}\right), t_{\text {hold }}=\mathbf{2 0} \mathbf{~ p s}, t_{C 2 Q}=\mathbf{7 0}$ $\mathrm{ps}, t_{N O T}=15 \mathrm{ps}, t_{O R}=80 \mathrm{ps}$, and $t_{X O R}=100 \mathrm{ps}$. Consider each part below independently and fill in your answers in the boxes below, making sure to include units.

(A) If the input In changes exactly on clock triggers, what is the minimum clock period that we can use and still ensure proper behavior? [4 pts]
\qquad
(B) If the input In changes $\mathbf{1 0} \mathbf{~ p s}$ after each clock trigger, what is the minimum $t_{X O R}$ delay we need to prevent a hold time violation? [2 pts]
\square

Question 2: Finite State Machine Implementation [10 pts]
(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table shown below. You are welcome to use 2- and 3 -input logic gates. [8 pts]

PS	In $_{\mathbf{1}}$	In $_{\mathbf{0}}$	NS	Out
0	0	0	1	1
0	0	1	0	1
0	1	0	X	X
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	X	X
1	1	1	1	0

Wire connection:

Wire crossing:

Question 3: Finite State Machine Design [10 pts]

(A) If we have an FSM with five states and a transition arrow from each state to all the other states (20 transitions total), how many bits does our system require? [2 pt]

State Bits:	Input Bits:

(B) The following FSM takes a stream of inputs and removes the second 1 from every consecutive string of 1 's.
Input: $\quad 1001100111001111$
Output: 10010001001010011

Complete the testbench initial block to thoroughly test the FSM. You are welcome to fill out the Verilog comments to help you keep track of state, but these will not be graded. [3 pts]

```
initial begin
    In <= 1; // state: 00
    @(posedge clk); In <= ___; // state:
    @(posedge clk); In <= 0; // state:
    @(posedge clk); In <= 1; // state
    @(posedge clk); In <= __; // state
    @(posedge clk); In <= 1; // state: _
    @(posedge clk); In <= ____ // state: ____
    @(posedge clk);
    $stop();
end
```

(C) Draw a state diagram for an FSM that removes the third 1 from every consecutive string of 1's: [5 pt]

