
University of Washington – Computer Science & Engineering

Spring 2018 Instructor: Justin Hsia 2018-05-15

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 10:00.

Instructions
 This quiz contains 4 pages, including this cover page. You may use the backs of

the pages for scratch work.

 Please clearly indicate (box, circle) your final answer.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making

devices.

 Remove all hats, headphones, and watches.

 You have 25 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where

you feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 9 9
(3) FSM Design 11 11

Total: 26 26

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with ݐ௣௘௥௜௢ௗ ൌ 150 ns (10-9 s), ݐ஼ଶொ ൌ 45 ns, ݐ௦௘௧௨௣ ൌ 15

ns, and ݐ௛௢௟ௗ ൌ 10 ns.

(A) Assume that In does not violate any timing constraints. Calculate the maximum

NAND gate delay that will allow the circuit to function correctly. Make sure to

include units. [3 pts]

ே஺ே஽,௠௔௫ݐ ൌ 90 ns

 Both paths through the NAND are equally long.

 So we need ݐ஼ଶொ ൅ ே஺ே஽ݐ ൑ ௣௘௥௜௢ௗݐ െ .௦௘௧௨௣ݐ

 Then ݐே஺ே஽ ൑ 150 െ 15 െ 45 ൌ 90 ns.

(B) Within what range of times (measured from each clock trigger) will changing the input

In not cause a timing violation? Answer using inclusive interval notation: [ݐ௦௧௔௥௧, ݐ௘௡ௗ].

[3 pts]

[10 , 135] ns

By definition, a timing violation will occur if an input to a register changes in either the

first ݐ௛௢௟ௗ or the last ݐ௦௘௧௨௣ of the clock period. Since In is directly attached to a

register input, we can directly use the provided timing constant values.

3

Question 2: Finite State Machine Implementation [9 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. You are welcome to use 2- and 3-input logic gates. [7 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 0 0 0 0
0 0 1 1 0 1 1

0 1 0 X X X X

0 1 1 X X X X

1 0 0 1 1 1 0

1 0 1 0 0 0 1

1 1 0 1 1 1 0

1 1 1 0 0 0 1

PS In1 In0 NS Out

0 0 0 0 0
0 0 1 X X
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 X X
1 1 0 0 0
1 1 1 1 0

 10 11 00

0/10

0/10

1/01

1/11

1/01

0/00

Wire connection:

Wire crossing:

4

Question 3: Finite State Machine Design [11 pts]

For this problem, consider the FSM below:

(A) Answer the following about the corresponding truth table. [2 pt]

2 state bits, 1 input bit. Rows: 8 Rows of Don’t Cares: 0

(B) Complete the testbench initial block to thoroughly test the state diagram. Even

though they may be unnecessary, please fill in all blanks. You are welcome to fill out the

Verilog comments to help you keep track of state, but these will not be graded. [5 pts]

(C) What two input sequences does this FSM “recognize” (i.e. when it outputs a 1)? [4 pt]

010 101

00

1/0

1/0

1/0
0/0

1/1 Reset
01 10 11

0/1 0/0

0/0

initial begin

 In <= 0____; // state: 00

 @(posedge clk); In <= 1; // state: 00___

 @(posedge clk); In <= 1; // state: 01___

 @(posedge clk); In <= 1; // state: 11___

 @(posedge clk); In <= 0____; // state: 11___

 @(posedge clk); In <= 1____; // state: 10___

 @(posedge clk); In <= 0____; // state: 01___

 @(posedge clk); In <= 0____; // state: 10___

 @(posedge clk); // state: 00___

 $stop();

end

