
University of Washington – Computer Science & Engineering

Spring 2019 Instructor: Justin Hsia 2019-05-21

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 11:30.

Instructions
 This quiz contains 4 pages, including this cover page. You may use the backs of

the pages for scratch work.

 Please clearly indicate (box, circle) your final answer.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making

devices.

 Remove all hats, headphones, and watches.

 You have 25 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where

you feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 9 9
(3) FSM Design 11 11

Total: 26 26

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit with 𝑡 20 ns (10-9 s), 𝑡 15 ns, 𝑡 8 ns, and

𝑡 32 ns. Assume that In changes 25 ns after every clock trigger.

(A) Calculate the minimum clock period that will allow the circuit to function correctly.

Make sure to include units. [3 pts]

𝑡 95 ns

The critical path is shown above in gold/yellow.

We need 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 .

Then 𝑡 32 15 20 20 8 95 ns.

(B) Calculate the maximum hold time that will allow the circuit to function correctly.

Make sure to include units. [3 pts]

𝑡 25 ns

The shortest path to a register input is shown above in purple (from In).

3

Question 2: Finite State Machine Implementation [9 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. You are welcome to use 2- and 3-input logic gates. [7 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 0 0 0 1
0 0 1 0 1 1 1

0 1 0 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 1 1 0 1 0

1 1 0 X X X X
1 1 1 X X X X

PS In1 In0 NS Out

0 0 0 X X
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 X X
1 0 1 0 0
1 1 0 1 0
1 1 1 0 1

1/10

0/00

1/10

0/10

1/11

0/01

01 10 00

Wire connection:

Wire crossing:

4

Question 3: Finite State Machine Design [11 pts]

For this problem, consider the FSM below:

(A) Complete the testbench initial block to thoroughly test the state diagram. Even

though they may be unnecessary, please fill in all blanks. You are welcome to fill out the

Verilog comments to help you keep track of state, but these will not be graded. [5 pts]

(B) What two 3-input sequences does this FSM “recognize” (i.e. when it outputs a 1)? [4 pt]

The states represent the last 2 inputs seen. 010 011

(C) We want to avoid “premature” outputs – an output of 1 before either of the full input

sequences we’re detecting have been seen. Which initial state should we switch to?

[2 pt]

Neither recognized sequence starts with a 1. 11

00
1/0

0/0
1/0 0/0

1/0
01 10 11

0/1
1/1

0/0
Reset

initial begin

 In <= 1____; // state: 10

 @(posedge clk); In <= 1; // state: 01___

 @(posedge clk); In <= 1____; // state: 11___

 @(posedge clk); In <= 0; // state: 11___

 @(posedge clk); In <= 0____; // state: 10___

 @(posedge clk); In <= 0; // state: 00___

 @(posedge clk); In <= 1____; // state: 00___

 @(posedge clk); In <= 0____; // state: 01___

 @(posedge clk); // state: 10___

 $stop();

end

