
University	of	Washington	–	Computer	Science	&	Engineering	
Spring	2021	 Instructor:		Clarice	Larson	 2021-05-18	

Name:	 _Molly Model__________________	

UWNetID:	_model_______________________	
	

Please	do	not	turn	the	page	until	11:30.	
	
Instructions	

• This	quiz	contains	4	pages,	including	this	cover	page.		You	may	use	the	backs	of	the	
pages	for	scratch	work.		

• Please	clearly	indicate	(box,	circle)	your	final	answer.	
• The	quiz	is	open	book	and	open	notes.	
• Please	silence	and	put	away	all	cell	phones	and	other	mobile	or	noise-making	

devices.	
• You	have	25	minutes	to	complete	this	quiz.	

	
Advice	

• Read	questions	carefully	before	starting.		Read	all	questions	first	and	start	where	
you	feel	the	most	confident	to	maximize	the	use	of	your	time.	

• There	may	be	partial	credit	for	incomplete	answers;	please	show	your	work.	
• Relax.		You	are	here	to	learn.	

	
Question	 Points	 Score	
(1)	SL	&	Timing	 6	 6	
(2)	FSM	Implementation	 10	 10	
(3)	FSM	Design	 10	 10	

Total:	 26	 26	
	 	

2	
	

Question	1:		Sequential	Logic	&	Timing		[6	pts]	
Consider	the	following	circuit	with	𝑡!"# =	30	ns	(10-9	s),		𝑡$"# =	10	ns,	𝑡$"% =	5	ns,	𝑡&'()* =	5	ns,	
and	𝑡+,- =	30	ns.			

	

(A) Calculate	the	minimum	clock	period	that	will	allow	the	circuit	to	function	correctly.		Make	
sure	to	include	units.		[3	pts]	

𝑡!"#$%& ≥	75	ns	

The	critical	path	is	shown	above	in	red.	
We	need	𝑡+,- + 𝑡!"# + 𝑡$"# ≤ 𝑡*'./01 − 𝑡&'()*.	
Then	𝑡*'./01 ≥ 30 + 30 + 10 + 5 = 75	ns.	
	
[2	pt]	Longest	path	indicated	
[1.5	pt]	2nd	longest	path	indicated	
[1	pt]	3rd	longest	path	indicated	
[1	pt]	Computation	includes	setup	time	

	
(B) Calculate	the	maximum	hold	time	that	will	allow	the	circuit	to	function	correctly.		Make	sure	

to	include	units.		[3	pts]	

𝑡'%(& ≤	50	ns	

The	shortest	path	to	a	register	input	is	shown	above	in	blue.	
We	need	𝑡+,- + 𝑡$"# + 𝑡$"# ≥ 𝑡2031.	
Then	𝑡2031 ≤ 30 + 10 + 10 = 50	ns.	
	
[2	pt]	Shortest	path	indicated	
[1.5	pt]	2nd	shortest	path	indicated	
[1	pt]	3rd	shortest	path	indicated	
[1	pt]	Computation	includes	setup	time	
	

	

3	
	

	

Question	2:		Finite	State	Machine	Implementation		[10	pts]	
(A) Fill	in	the	provided	truth	table	based	on	the	FSM	shown.		[2	pts]	
	

	

[0.25	pt	each]	Correct	term

	
(B) Complete	the	circuit	diagram	below	using	minimal	logic	based	on	the	truth	table	

shown	below.		You	are	welcome	to	use	2-	and	3-input	logic	gates.		[8	pts]	
	
	
	
	
	
	

	 	

PS1	 PS0	 In	 NS1	 NS0	 Out1	 Out0	
0	 0	 0	 0	 1	 0	 1	
0	 0	 1	 0		 0	 0	 0	
0	 1	 0	 1	 0	 1	 0	
0	 1	 1	 0	 0	 0	 0	
1	 0	 0	 1	 0	 1	 1	
1	 0	 1	 0	 0	 0	 0	
1	 1	 0	 X	 X	 X	 X	
1	 1	 1	 X	 X	 X	 X	

PS	 In1	 In0	 NS	 Out	
0	 0	 0	 0	 1	
0	 0	 1	 1	 0	
0	 1	 0	 1	 0	
0	 1	 1	 X	 X	
1	 0	 0	 0	 1	
1	 0	 1	 1	 0	
1	 1	 0	 1	 0	
1	 1	 1	 X	 X	

Wire	connection:	

Wire	crossing:	

	𝑁𝑆 = 	𝐼𝑛6 + 𝐼𝑛7	
	𝑂𝑢𝑡 = 𝐼𝑛6VVVV ∗ 𝐼𝑛7VVVV	
	
For	both	NS	and	Out:	
[1	pt]		Truth	table	transcribed	to	K-Map	correctly	
[2	pt]	Correct	simplification	
[1	pt]	Correct	circuit	diagram	
	

4	
	

Question	3:		Finite	State	Machine	Design		[10	pts]	
For	this	problem,	consider	the	FSM	below:	

	

(A) What	two	3-input	sequences	does	this	FSM	“recognize”	(i.e.	when	it	outputs	a	1)?		[2	pts]	

101	 111	

	

(B) Complete	the	testbench	initial	block	to	thoroughly	test	the	state	diagram.		Even	though	
they	may	be	unnecessary,	please	fill	in	all	blanks.	You	are	welcome	to	fill	out	the	Verilog	
comments	to	help	you	keep	track	of	state,	but	these	will	not	be	graded.		[5	pts]	

	
(C) The	FSM	below	attempts	to	recognize	the	same	sequences.		Does	it	recognize	the	same	

sequences?		If	it	does,	explain	why.		If	it	doesn’t,	list	all	of	the	issues	with	it.				[3	pts]	

	

initial begin
 In <= 1; // state: 00
 @(posedge clk); In <= 0; // state: _01_
 @(posedge clk); In <= 1; // state: _10_
 @(posedge clk); In <= __1__; // state: _01_
 @(posedge clk); In <= __1__; // state: _11_
 @(posedge clk); In <= __0__; // state: _11_
 @(posedge clk); In <= __0__; // state: _10_
 @(posedge clk); In <= __0__; // state: _00_
 @(posedge clk); // state: _00__
 $stop();
end

[+1	pt]	Does	not	recognize	overlapping	111
[+1	pt]	Does	not	recognize	overlapping	101
[+1	pt]	Does	not	have	a	reset	signal

