
University of Washington – Computer Science & Engineering

Spring 2023 Instructor: Justin Hsia 2023-05-16

Name: _________________________
Student ID

Number: ____________

Please do not turn the page until 2:20.

Instructions
• This quiz contains 4 pages, including this cover page. You may use the backs of the

pages for scratch work.

• Please clearly indicate (box, circle) your final answer.

• The quiz is closed book and closed notes.

• Please silence and put away all cell phones and other mobile or noise-making

devices.

• Remove all hats, headphones, and watches.

• You have 30 (+5) minutes to complete this quiz.

Advice
• Read questions carefully before starting. Read all questions first and start where

you feel the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.

• Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6
(2) FSM Implementation 10
(3) FSM Design 11

Total: 27

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with 𝑡setup = 8 ns (10-9 s), 𝑡C2Q = 10 ns, 𝑡AND = 20 ns,

𝑡NOR = 16 ns, 𝑡NOT = 6 ns, and 𝑡XOR = 22 ns.

(A) Calculate the minimum clock period that will allow the circuit to function correctly. [3 pts]

62 ns

(B) Calculate the maximum hold time (𝑡hold) that will allow the circuit to function correctly.

[3 pts]

32 ns

3

Question 2: Finite State Machine Implementation [10 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. Use only 2-input logic gates. [8 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 X X X X
0 0 1 X X X X
0 1 0 1 0 0 1
0 1 1 1 1 1 1
1 0 0 1 0 1 0
1 0 1 1 1 0 1
1 1 0 0 1 0 0
1 1 1 1 1 0 0

PS In1 In0 NS Out

0 0 0 0 1
0 0 1 X X
0 1 0 0 0
0 1 1 0 0
1 0 0 1 0
1 0 1 X X
1 1 0 1 0
1 1 1 0 1

01 10 11

0/01

0/10

1/01

0/00

1/11

1/00

Wire connection:

Wire crossing:

 00 01 11 10

00 01 11 10

0 0

1 1

4

Question 3: Finite State Machine Design [11 pts]

The following FSM represents a Red Light, Green Light game, where a player is only allowed to

move forward (=) when the light is green (=). Here, the player wins (output =) after

successfully moving twice; moving when the light is red (=) results in returning to the start.

(A) How many total rows are in the truth table for this FSM? How many of the rows are filled

with Don’t Cares?

Rows: Don’t Care Rows:

(B) Complete the testbench block to thoroughly test JUST the and states.

You need to fill in all bolded blanks. You are welcome to fill out the Verilog comments to

help you keep track of state, but these will not be graded. [7 pts]

(C) If we change the game so that it takes THREE successful moves to win, what would your

updated answers be for Part A? [2 pt]

Rows: Don’t Care Rows:

Start
00

Mid
01

LM/0

M/0

Mഥ /1

Lത + Mഥ /0

LതM/0

Reset
Win
10

 LM/1

Mഥ /0

initial begin

 L <= 0; M <= 0; // state: 0

 @(posedge clk); L <= ____; M <= ____; // state: ___

 @(posedge clk); L <= 1; M <= 0; // state: ___

 @(posedge clk); L <= 0; M <= 1; // state: ___

 @(posedge clk); L <= ____; M <= ____; // state: ___

 @(posedge clk); L <= 1; M <= 0; // state: ___

 @(posedge clk); L <= 1; M <= 1; // state: ___

 @(posedge clk); L <= ____; M <= ____; // state: ___

 @(posedge clk); L <= 1; M <= 1; // state: 1

 @(posedge clk);

 ... // test the Win state

 @(posedge clk);

 $stop();

end

