
University of Washington – Computer Science & Engineering

Spring 2024 Instructor: Justin Hsia 2024-05-14

Name: _Molly_Model_______________
Student ID

Number: _1234567______

Please do not turn the page until 2:20.

Instructions
• This quiz contains 4 pages, including this cover page. You may use the backs of the

pages for scratch work.

• Please clearly indicate (box, circle) your final answer.

• The quiz is closed book and closed notes.

• Please silence and put away all cell phones and other mobile or noise-making

devices.

• Remove all hats, headphones, and watches.

• You have 30 (+5) minutes to complete this quiz.

Advice
• Read questions carefully before starting. Read all questions first and start where you

feel the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.

• Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 10 10
(3) FSM Design 11 11

Total: 27 27

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with 𝑡𝑠𝑒𝑡𝑢𝑝 = 11 ns, 𝑡𝐶2𝑄 = 9 ns, 𝑡𝑁𝑂𝑇 = 3 ns, 𝑡𝑂𝑅 = 8 ns, and

𝑡𝑋𝑂𝑅 = 10 ns. Assume that In changes 7 ns after every clock trigger.

(A) Calculate the minimum clock period that will allow the circuit to function correctly. [3 pts]

38 ns

The critical path is shown above in red.

We need 𝑡C2Q + 𝑡XOR + 𝑡OR ≤ 𝑡period − 𝑡setup.

Then 𝑡period ≥ 9 + 10 + 8 + 11 = 38 ns.

(B) Calculate the maximum hold time (𝑡hold) that will allow the circuit to function correctly.

[3 pts]

17 ns

The shortest path to a register input is shown above in blue.

We need 𝑡In + 𝑡XOR ≥ 𝑡hold.

Then 𝑡hold ≤ 7 + 10 = 17 ns.

3

Question 2: Finite State Machine Implementation [10 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table shown

below. Use only 2-input logic gates. [8 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 X X X X
0 0 1 X X X X
0 1 0 1 0 0 1
0 1 1 1 1 0 1
1 0 0 0 1 1 0
1 0 1 1 1 1 0
1 1 0 1 0 1 1
1 1 1 0 1 1 1

PS In1 In0 NS Out

0 0 0 1 0
0 0 1 0 1
0 1 0 X X
0 1 1 0 0
1 0 0 X X
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0

01 11 10

1/01

1/11

0/11

0/10

0/01

1/10

Wire connection:

Wire crossing:

 00 01 11 10

00 01 11 10

0 0

1 1

4

Question 3: Finite State Machine Design [11 pts]

The following FSM represents a DNA construct known as a promoter, whose output level of m is

determined inversely to the number of repressors (r) bound to its two binding sites (op1 and op2).

The value of the one-bit input In represents a repressor binding (1) or a repressor unbinding (0).

(A) How many total rows are in the truth table for this FSM? How many of the rows are filled

with Don’t Cares? [2 pts]

2 state + 1 input bits → 23 = 8 rows in TT.
One missing state (11) with 2 transitions.

Rows: 8 Don’t Care Rows: 2

(B) Complete the test bench initial block to thoroughly test the FSM by filling in all bolded

blanks. You may fill out the comments to track the state, but these won’t be graded. Don’t

worry about situations we don’t expect to see during normal operation. [5 pts]

(C) Is there any way that the hardware implementation could output 10? Briefly explain. [2 pts]

Yes, if the system ends up in state 11 (e.g., before a reset) and the output don’t cares
resolved to 10 for one or both input options.

(D) Consider the limitations of FSMs in representing certain systems. Name one unrealistic

behavior (compared to a real promoter) that is implied by the operation of this FSM. [2 pts]

Examples of accepted responses:

• That a repressor binds or unbinds at every clock cycle.
• That only one repressor can bind at a time (i.e., no transition from 00 to 10).
• The input meaning "breaks" at the edges (e.g., "binding" from Two stays at Two).

• For 1 repressor bound, no indication of which site it is bound to.

r r

op1 op2

m
None
00

One
01

Two
10

1/01

0/11

1/00

0/01

0/11 1/00

initial begin

 In <= 0; // state: 00

 @(posedge clk); In <= 1___; // state: 00__

 @(posedge clk); In <= 0; // state: 01__

 @(posedge clk); In <= 1; // state: 00__

 @(posedge clk); In <= 1___; // state: 01__

 @(posedge clk); In <= 1; // state: 10__

 @(posedge clk); In <= 0___; // state: 10__

 @(posedge clk); // state: 01__

 $stop();

end

