
University of Washington – Computer Science & Engineering 

Winter 2017 Instructor:  Justin Hsia 2017-02-21 

Name: ______________________________ 

UWNetID: ______________________________ 
 

Please do not turn the page until 10:30. 
 

Instructions 
 This quiz contains 4 pages, including this cover page.  You may use the backs of 

the pages for scratch work.  

 Please clearly indicate (box, circle) your final answer. 

 The quiz is closed book and closed notes. 

 Please silence and put away all cell phones and other mobile or noise-making 

devices. 

 Remove all hats, headphones, and watches. 

 You have 25 minutes to complete this quiz. 

 

Advice 
 Read questions carefully before starting.  Read all questions first and start where 

you feel the most confident to maximize the use of your time. 

 There may be partial credit for incomplete answers; please show your work. 

 Relax.  You are here to learn. 

 

Question Points Score 
(1) SL & Timing 7  
(2) FSM Implementation 10  
(3) FSM Design 10  

Total: 27  
  



2 
 

Question 1:  Sequential Logic & Timing  [7 pts] 

Consider the following circuit diagram with ݐ௦௘௧௨௣ ൌ 60 ps (10-12 s), ݐ௛௢௟ௗ ൌ 40 ps, 

஼ଶொݐ ൌ 140 ps, and ݐேைோ ൌ 200 ps.  Consider each part below independently and fill in 

your answers in the boxes below, making sure to include units. 

 

(A) If the input In changes exactly on clock triggers, what is the minimum clock 

period that we can use and still ensure proper behavior?  [3 pts] 

 

 

 

 

 

 

 

 

 

 

(B) If we fix the clock period at 750 ps, what range of times (measured from each 

clock trigger) will changing the input In cause a setup time violation?  Answer 

using inclusive interval notation: [ݐ௦௧௔௥௧, ݐ௘௡ௗ].  [4 pts] 

[ ______ , ______ ] ps 

 

 

  



3 
 

Question 2:  Finite State Machine Implementation  [10 pts] 

(A) Fill in the provided truth table based on the FSM shown.  [2 pts] 

 

 

 

 
 

 

 
(B) Complete the circuit diagram below using minimal logic based on the truth table 

shown below.  You are welcome to use 2- and 3-input logic gates.  [8 pts] 

 

 

 

 

 

 

 

 

 

 

 

  

PS1 PS0 In NS1 NS0 Out1 Out0 

0 0 0 0   0 
0 0 1 1 1 1 1 
0 1 0 X   X 
0 1 1 X X X X 
1 0 0 1   0 
1 0 1 1 1 1 1 
1 1 0 1   0 
1 1 1 1 1 1 1 

PS In1 In0 NS Out 

0 0 0 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 1 X X 
1 0 0 0 1 
1 0 1 1 1 
1 1 0 1 0 
1 1 1 X X 

  

1/11 

1/11 

0/10 

1/11 
 

0/00 0/10 

00 11 10 

Wire connection: 

Wire crossing: 



4 
 

Question 3:  Finite State Machine Design  [10 pts] 

The following FSM represents a stop light that is controlled by a timer (input T pulses 

high at regular intervals) and a sensor that signals high when a car is stopped at the 

intersection (input C).  The light outputs the colors 00 – red, 01 – yellow, 10 – green: 

 

(A) How many total rows are in the truth table for this FSM?  How many of the 

rows are filled with Don’t Cares?  [2 pt] 

Rows: Don’t Care Rows: 

(B) The testbench initial block below doesn’t cover every transition! In the table 

on the right, write out the four missing state and input combinations.  Don’t 

include Don’t Care situations.  You are welcome to fill out the Verilog comments 

to help you keep track of state, but these will not be graded. [8 pts] 

 

R 
00 

G 
10 

TC/10 

T/00 

Tഥ/01 

Tഥ ൅ Cത/00 

Tഥ/10 
Reset 

Y 
01 

T/01 

initial begin 

                    T <= 0;  C <= 0;  // state:  00 

   @(posedge clk);  T <= 1;  C <= 0;  // state: ____ 

   @(posedge clk);  T <= 1;  C <= 1;  // state: ____ 

   @(posedge clk);  T <= 0;  C <= 0;  // state: ____ 

   @(posedge clk);  T <= 0;  C <= 1;  // state: ____ 

   @(posedge clk);  T <= 1;  C <= 1;  // state: ____ 

   @(posedge clk);  T <= 0;  C <= 1;  // state: ____ 

   @(posedge clk);  T <= 1;  C <= 0;  // state: ____ 

   @(posedge clk);                    // state: ____ 

   $stop(); 
end 

PS1 PS0 T C 

0 0 0 1 

1 0 1 0 

0 1 0 0 

0 1 1 1 


