
University of Washington – Computer Science & Engineering

Winter 2019 Instructor: Justin Hsia 2019-02-26

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 11:30.

Instructions
 This quiz contains 4 pages, including this cover page. You may use the backs of

the pages for scratch work.

 Please clearly indicate (box, circle) your final answer.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making

devices.

 Remove all hats, headphones, and watches.

 You have 25 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where

you feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 9 9
(3) FSM Design 11 11

Total: 26 26

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with 𝑡 150 ns (10-9 s), 𝑡 35 ns, and

𝑡 50 ns. Assume that In changes 10 ns after every clock trigger.

(A) Calculate the maximum setup time that will allow the circuit to function correctly.

Make sure to include units. [3 pts]

𝑡 30 ns

The critical path is shown above in red.

 So we need 𝑡 𝑡 𝑡 𝑡 𝑡 .

 Then 𝑡 150 50 35 35 30 ns.

(B) Calculate the maximum hold time that will allow the circuit to function correctly.

Make sure to include units. [3 pts]

𝑡 45 ns

The shortest path to the register input is shown above in light blue.

 So we need 𝑡 𝑡 𝑡 .

 Then 𝑡 10 35 45 ns.

3

Question 2: Finite State Machine Implementation [9 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. You are welcome to use 2- and 3-input logic gates. [7 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 0 1 0 0

0 0 1 0 0 1 1
0 1 0 1 1 0 1

0 1 1 0 1 1 0

1 0 0 X X X X

1 0 1 X X X X

1 1 0 1 1 1 1

1 1 1 0 0 0 0

PS In1 In0 NS Out

0 0 0 1 0
0 0 1 0 0
0 1 0 X X
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 X X
1 1 1 0 1

1/00

1/11

0/00

0/01

0/11 1/10

11 00 01

Wire connection:

Wire crossing:

4

Question 3: Finite State Machine Design [11 pts]

The following FSM represents a 3-way switch, where two switches (left and right) control the

same light. If both switches are in the same position (i.e. both up or both down), then the

output (light bulb) is on (1), otherwise it is off (0). Here the inputs L and R are 1 if someone

flips (off→on or on→off) the left or right switch, respectively.

(A) How many total rows are in the truth table for the 3-way switch FSM? How many of

the rows are filled with Don’t Cares? [2 pt]

1 state + 2 input bits → 2 8 rows in TT.
Each arrow covers 2 transitions, so 8 are present.

Rows: 8 Don’t Care Rows: 0

(B) What is the max number of transitions per state in this FSM? [2 pt]

2 input bits → 2 4 transitions per state. Max Transitions Per State: 4

(C) Complete the testbench initial block to thoroughly test the state diagram. Even

though they may be unnecessary, please fill in all blanks. You are welcome to fill out the

Verilog comments to help you keep track of state, but these will not be graded. [7 pts]

Off
0

On
1

LR LR/1

LR LR /1

LR LR/0

Reset

LR LR/0 Right Left

initial begin

 L <= 0; R <= 0; // state: 0

 @(posedge clk); L <= 1___; R <= 0___; // state: 0___

 @(posedge clk); L <= 1; R <= 1; // state: 1___

 @(posedge clk); L <= 0___; R <= 1___; // state: 1___

 @(posedge clk); L <= 1; R <= 1; // state: 0___

 @(posedge clk); L <= 0; R <= 1; // state: 0___

 @(posedge clk); L <= 0___; R <= 0___; // state: 1___

 @(posedge clk); L <= 1; R <= 0; // state: 1___

 @(posedge clk);

 $stop();

end

