
University of Washington – Computer Science & Engineering
Winter 2020 Instructor: Justin Hsia 2020-02-25

Name: _Perry_Perfect_______________
Student ID

Number: _1234567______

Please do not turn the page until 11:30.

Instructions

• This quiz contains 4 pages, including this cover page. You may use the backs of
the pages for scratch work.

• Please clearly indicate (box, circle) your final answer.
• The quiz is closed book and closed notes.
• Please silence and put away all cell phones and other mobile or noise-making

devices.
• Remove all hats, headphones, and watches.
• You have 25 minutes to complete this quiz.

Advice

• Read questions carefully before starting. Read all questions first and start where
you feel the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.
• Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 10 10
(3) FSM Design 10 10

Total: 26 26

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with 𝑡 12 ns (10-9 s), 𝑡 18 ns, 𝑡 8 ns, 𝑡 25 ns, and 𝑡 20 ns. Assume that In changes 9 ns after every clock trigger.

(A) Calculate the minimum clock period that will allow the circuit to function correctly.
Make sure to include units. [3 pts] 𝑡 66 ns

The critical path is shown above in red.
We need 𝑡 𝑡 𝑡 𝑡 𝑡 .
Then 𝑡 9 25 20 12 66 ns.

(B) If we swap out our AND gate for one with a different combinational delay, what is the

minimum 𝒕𝐀𝐍𝐃 that will allow the circuit to function correctly. Make sure to include
units. [3 pts] 𝑡 10 ns

The shortest path to a register input is shown above in blue.
We need 𝑡 𝑡 𝑡 .
Then 𝑡 18 8 10 ns.

3

Question 2: Finite State Machine Implementation [10 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. You are welcome to use 2- and 3-input logic gates. [8 pts]

PS1 PS0 In NS1 NS0 Out1 Out0
0 0 0 X X X X
0 0 1 X X X X
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 1 0 1
1 1 0 1 1 1 0
1 1 1 1 0 1 1

PS In1 In0 NS Out
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 X X
1 0 0 1 1
1 0 1 0 1
1 1 0 1 1
1 1 1 X X

1/11

0/10

1/01

0/10

0/10 1/01

11 10 01

Wire connection:

Wire crossing:

4

Question 3: Finite State Machine Design [10 pts]

Justin has built a secret elevator that goes directly to his office! It is controlled by 3-state
rocker switch (see diagram below) that passes the input signals up (U) and down (D). The
output is whether the elevator doors are open (1) or closed (0).

(A) How many total rows are in the truth table for the 3-way switch FSM? How many of

the rows are filled with Don’t Cares? [2 pt]

1 state + 2 input bits → 2 8 rows in TT.
Each arrow covers 1 transition, so 6 are present.

Rows: 8 Don’t Care Rows: 2

(B) Complete the testbench initial block to thoroughly test the state diagram. Even
though they may be unnecessary, please fill in all blanks. You are welcome to fill out the
Verilog comments to help you keep track of state, but these will not be graded. [5 pts]

(C) The rocker switch imposes a physical constraint: when going between the up and down

states, you must pass through the neutral state. Does your testbench above conform to
this constraint or not? Explain briefly. [3 pt]

No, it does not. Between the first two clock cycles, we jump from UD to UD.

Floor 1
0

Floor 5
1

UD/0 UD/1

UD/1 UD/0
Down
(UD)

3-state Rocker Switch:

Neutral
(UD)

Up
(UD)

UD/0

UD/0

initial begin
 U <= 0; D <= 1; // state: 0

 @(posedge clk); U <= 1___; D <= 0___; // state: 0__

 @(posedge clk); U <= 1; D <= 0; // state: 1__

 @(posedge clk); U <= 0___; D <= 0___; // state: 1__

 @(posedge clk); U <= 0; D <= 1; // state: 1__

 @(posedge clk); U <= 0___; D <= 0___; // state: 0__

 @(posedge clk);

 $stop();
end

