University of Washington - Computer Science \& Engineering Winter 2023 Instructor: Chris Thachuk 2023-02-21 CSE 369 QUIZ 2

Name:
Student ID
Number:
\qquad
\qquad

Please do not turn the page until 12:20.

Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $30(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) SL \& Timing	6	
(2) FSM Implementation	10	
(3) FSM Design	12	
Total:	$\mathbf{2 8}$	

Question 1: Sequential Logic \& Timing [6 pts]

Consider the following circuit diagram with a clock period of $\mathbf{8 5} \mathbf{n s}\left(10^{-9} \mathrm{~s}\right), t_{\mathrm{C} 2 \mathrm{Q}}=\mathbf{2 5} \mathbf{n s}, t_{\mathrm{XOR}}=\mathbf{2 5}$ ns , and $t_{\text {NAND }}=10 \mathrm{~ns}$. Assume that A changes 15 ns after every clock trigger.

(A) Calculate the maximum setup time that will allow the circuit to function correctly. Make sure to include units. [3 pts]
\square
(B) Calculate the maximum hold time that will allow the circuit to function correctly. Make sure to include units. [3 pts]

Question 2: Finite State Machine Implementation [10 pts]
(A) Fill in the provided truth table based on the FSM shown. [2 pts]

PS_{1}	$\mathrm{PS}_{\mathbf{0}}$	In	$\mathrm{NS}_{\mathbf{1}}$	$\mathrm{NS}_{\mathbf{0}}$	Out $_{\mathbf{1}}$	Out $_{\mathbf{0}}$
0	0	0	1	1		0
0	0	1	1	0	0	1
0	1	0	X		X	
0	1	1	X	X	X	X
1	0	0		1	0	
1	0	1	1	0	0	
1	1	0	1	0	0	0
1	1	1		0	1	

(B) Complete the circuit diagram below using minimal logic based on the truth table shown below. Use only 2-input logic gates. [8 pts]

PS	In $_{1}$	In $_{0}$	NS	Out
0	0	0	0	0
0	0	1	1	X
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	X	1
1	1	0	X	X
1	1	1	1	X

Wreomeneation +

Wire crossing:

Question 3: Finite State Machine Design [12 pts]

The following FSM outputs a modified version of its stream of inputs:

(A) Assume we pass the following stream of inputs (left-to-right) immediately after resetting the FSM. What is the corresponding stream of outputs? [4 pt]
Input: $\begin{array}{lllllllll} & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$
Output:
(B) As brieflyas you can, describe how this FSM manipulates its input stream. [3 pt]
\square
(C) Complete the testbench initial block to test the state diagram as thoroughly as possible. You need to fill in all bolded blanks. You are welcome to fill out the Verilog comments to help you keep track of state, but these will not be graded. [4 pts]

```
initial begin
\begin{tabular}{ll} 
& In \(<=0 ; \quad\) // state: 00 \\
@ (posedge clk); \(\quad\) In \(<=\ldots \quad / /\) state: ___
\end{tabular}
    @(posedge clk); In <= ____ // state:______
    @(posedge clk); In <= ____; // state: _____
    @(posedge clk); In <= ____; // state:_____
    @(posedge clk); In <= 0; // state:__
    @(posedge clk); $stop();
end
```

(D) What transition of the state diagram were you not able to test in the above testbench? [1 pt]

