University of Washington - Computer Science \& Engineering

Spring 2020 Instructor: Clarice Larson 2020-06-02
CSE 369 QUIZ 3
Name: _Molly_Model \qquad
UWNetID:_mode| \qquad

Please do not turn the page until 11:30.

Instructions

- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put a box around final answers.
- The quiz is open book and open notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- You have 40 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score	
(1) Counters	12	12	
(2) Shift Registers	9	9	
(3) Polynomials	11	11	
	Total:	$\mathbf{3 2}$	$\mathbf{3 2}$

Question 1: Counters [12 pts]

Implement a counter that goes through the following state sequence: $\mathbf{0 0 0} \boldsymbol{\rightarrow 0 1 0} \rightarrow \mathbf{0 1 1} \boldsymbol{\rightarrow 1 0 1} \rightarrow$ $000 \rightarrow$... using a minimal number of 2 -input logic gates.
(A) Complete the truth table below. [3 pts]. [-0.25 pt per error]

PS_{2}	PS_{1}	$\mathrm{PS}_{\mathbf{0}}$	$\mathrm{NS}_{\mathbf{2}}$	NS_{1}	$\mathrm{NS}_{\mathbf{0}}$
0	0	0	0	1	0
0	0	1	X	X	X
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	X	X	X
1	0	1	0	0	0
1	1	0	X	X	X
1	1	1	X	X	X

(B) Complete the K-maps below and find the minimum sum-of-products solutions. [6 pts]

$\mathrm{NS}_{2}=\overline{P S_{2}} P S_{0} \mathrm{ORNS}_{2}=P S_{1} P S_{0}$
$\mathrm{NS}_{1}=\overline{P S_{0}}$
$\mathrm{NS}_{0}=P S_{1}$
[1 pt per K-map] Filled in correctly [1 pt per expression] Grouping
(C) Draw your minimal logic circuit. [3 pts]
[1 pt per circuit]

Question 2: Shift Registers [9 pts]

We are using a 3-bit LFSR as a pseudo-random number generator, but we only have a 2 -input XNOR gate available. Assume we start in state 000.

(A) Draw out the full state transition diagram (i.e. include ALL states) for this LFSR below: [4 pts]

[0.5 pt per transition] Correct states/transitions
[-0.25 pt] No reset signal
(B) What is/are the sink state(s) of this LFSR? [1 pt]

$$
\begin{array}{l|l}
\text { Sinks(s): } & 111
\end{array}
$$

(C) Complete the Verilog implementation below. [4 pts]

```
module LFSR (Q, enable, reset, clk);
    input logic enable, reset, clk;
    output logic [2:0] Q;
    always_ff @(posedge clk)
    if (reset)
        Q <=
```

\qquad

``` \(3^{\prime} \mathrm{b} 000\)
``` \(\qquad\)
``` ;
    else if (enable)
        Q<= { _~(Q[1] ^ Q[0])_'___Q[2]___'__Q[1]___ };
```

endmodule

Question 3: Polynomials [11 pts]

A third degree polynomial or a cubic function is a function of the form $F_{3}=a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}$. Hint. Horner's method rewrites a polynomial as:

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{a}_{0}+\mathrm{x}\left(\mathrm{a}_{1}+\mathrm{x}\left(\mathrm{a}_{2}+\mathrm{x}\left(\mathrm{a}_{3}+\cdots+\mathrm{x}\left(\mathrm{a}_{\mathrm{n}-1}+\mathrm{x} \mathrm{a}_{\mathrm{n}}\right) \cdot \cdot\right)\right)\right)
$$

The coefficients and x are n bits wide. Assume $t_{\mathrm{ADD}}=50 \mathrm{ps}, t_{\mathrm{MULT}}=100 \mathrm{ps}, t_{\mathrm{C} 2 \mathrm{Q}}=30 \mathrm{ps}$. The following logic blocks will be needed (w is the width of the bus):

(A) Implement a minimal combinational logic circuit using only adders and multipliers that computes a cubic polynomial of n bit numbers. [6 pts] [1 pt per logic block]

(B) What is the delay through your combinational logic circuit? [1pt]
\qquad
$50 \ldots \mathrm{ps}$
ps
(C) Implement a minimal sequential logic circuit that computes a cubic polynomial. Assume that an n bit coefficient is available every clock cycle and that your registers start at 0 . You can specify the order that the coefficients arrive. Again, you may only use adders and multipliers in addition to the 2 registers shown. Note: the 2 registers have a reset line to set them to 0 . [3 pts] [2 pts] adder, [1 pt] mult

(D) What is the delay through the critical path of your sequential logic circuit? [1pt]

