University of Washington - Computer Science \& Engineering
 Spring 2022 Instructor: Mark Wyse 2022-05-31
 CSE 369 QUIZ 3

Name:
 Student ID Number:
 \square SOLUTIONS 123456789
 \qquad

Please do not turn the page until 11:30.

Instructions

- This quiz contains 7 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 60 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) Lightning Round	16	
(2) Analysis \& Design	15	
(3) Module Design	15	
Total:		46

Question 1: Lightning Round [16 pts]

(A) True or False: The number of rows in a truth table depends only on the number of inputs to the logic function. [1 pts]

True

(B) Name one of the 2-input "universal" logic gates discussed in class. [1 pts]

NAND or NOR
(C) A K-map is used to perform logic simplification and generates what type of two-level Boolean expression? [1 pts]

Sum of Products

(D) True or False: The input of a positive edge-triggered DFF must remain stable from the positive edge of the clock through the CLK-to-Q delay. [1 pts]

False

(E) True or False: In a Synchronous Digital System (SDS), we only need to know the setup time, hold time, and CLK-to-Q delay constants to ensure correct behavior. [1 pts]

> False
(F) True or False: In a circuit where all inputs and outputs are registered, the critical path is the path with the longest delay between any two registers in the circuit. [1 pts]

True
(G) True or False: A synchronous reset signal causes the value of the register to be reset when the reset signal is asserted. [1 pts]

```
False
```

(H) Sequential logic (e.g., registers) timing must not violate the setup and hold time constraints within a clock period. Write out the inequality used to verify the hold and setup time constraints. [2 pts]

$$
\boldsymbol{t}_{\text {hold }} \leq \boldsymbol{t}_{\text {input }, i} \leq \boldsymbol{t}_{\text {period }}-\boldsymbol{t}_{\text {setup }}
$$

(I) Finite State Machines (FSMs), as studied in this class (Mealy machines) are defined by what three items? [3 pts]

- A set of states, S
- An initial state, So
- A transition function that maps from the current input and current state to the next state and output
(J) How many state bits are required to represent a state machine with S states? [1 pts]
ceiling(log2(S))
(K) What computational building block or routing element can be used to implement arbitrary N -input logic functions? [1 pts]
Mux / multiplexor
(L) An LFSR (Linear Feedback Shift Register) often uses a two-input logic gate to produce the feedback input in the shift register. How does the choice of logic gate and its input bits affect the output sequence of the LFSR? [2 pts]

Sub-optimal choice results in an LFSR that produces a shorter and/or less random output sequence.

Question 2: Analysis \& Design - TMR [15 pts]

Triple Modular Redundancy (TMR) is a common technique for making a circuit fault tolerant. A TMR-based circuit performs the same computation in three identical and independent circuits before outputting a result that is agreed upon by at least two of the three circuits (i.e., the majority result).

Part 1 What is the minimum clock period achievable by the non-TMR circuit below? The Inputs and Results blocks are n-bit registers. [3 pts]

Assume $t_{\text {setup }}=10 \mathrm{~ns}, t_{\text {hold }}=5 \mathrm{~ns}, t_{C 2 Q}=8 \mathrm{~ns}$, and $t_{A L U}=50 \mathrm{~ns}$.

$$
68 \mathrm{~ns}=(8+10+50)
$$

Part 2 The circuit diagram below shows the circuit above with TMR added. The Error Logic block takes n-bit ALU results A, B, and C as inputs and produces two outputs: a 1-bit Error signal that is captured by a register and a k-bit signal that is sent to the Result Logic block. The Result Logic block takes the k-bit signal from the Error Logic block and ALU results A, B, and C as inputs and produces the n -bit Result signal that is captured into a register.

What is the minimum clock period achievable by the TMR circuit above? The Inputs and Results blocks are registers. [4 pts]
Assume $t_{\text {setup }}=10 \mathrm{~ns}, t_{\text {hold }}=5 \mathrm{~ns}, t_{C 2 Q}=8 \mathrm{~ns}, t_{A L U}=50 \mathrm{~ns}, t_{\text {Error }}=12 \mathrm{~ns}, t_{\text {Result }}=15 \mathrm{~ns}$.

$$
\begin{aligned}
& t_{\text {ce }}+t_{\text {ALL }}+t_{\text {zraor }}+t_{\text {travel }}+t_{5} \\
& =8+50+12+15+10=95
\end{aligned}
$$

Part 3 The TMR-based design in Part 2 has an Error Logic block to detect a failure in one of the ALUs. The block takes ALU results A, B, and C as inputs and outputs a 1-bit Error signal, which has a value of 1 if the result of any ALU does not match the result of any other ALU. Assume the ALUs produce n-bit results. Implement the Error Logic block's Error Bit functionality from the TMR circuit in Part 2 (draw the circuit diagram). [8 pts]

You can freely use 2:1 muxes, 1:2 demuxes, 2- or 3-input logic gates, the constants 0 and 1 , and the following logic blocks:

Question 3: Module Design - Up/Down Counter [15 pts]

An n-bit Up/Down Counter is a counter that supports both increment and decrement operations.
The Up/Down Counter has the following interface:

- $u p$ (input, 1-bit): increments counter by 1 when raised
- down (input, 1-bit): decrements counter by 1 when raised
- count (output, n-bits): current value of counter
- clock(input): clock signal for sequential logic
- reset (input, 1-bit): synchronous reset, resets counter to 0 when raised
resethas priority over $u p$ and down, and the $u p$ and down signals may be raised at the same time.

Part 1 Complete the following table describing the functionality of the Up/Down Counter. next count is the next value of the counter. The current count is given by the variable C. You may use the values 0,1 , and X (logical don't care), along with the variable C in expressions in the table. [5 pts]
Note: There may be more rows than are required to fully specify the functionality.

count	reset	up	down	next count
C	1	X	X	0
C	0	0	0	C
C	0	0	1	C-1
C	0	1	0	C+1
C	0	1	1	C
C				
C				
C				

Part 2 Implement the Up/Down Counter described above (draw the circuit diagram). You can freely use 4:1 and 2:1 muxes, 1:2 and 1:4 demuxes, 2-input logic gates, the constants $\mathbf{0}$ and $\mathbf{1}$, and the logic blocks given below. The Reg block is a collection of $\mathbf{n} 1$-bit DFF's that share the same clock and collectively hold an n-bit vector. Clearly label all five of the module's interface signals in your circuit diagram. [10 pts]

