
University of Washington – Computer Science & Engineering

Spring 2023 Instructor: Justin Hsia 2023-05-30

Name: _Molly_Model_______________
Student ID

Number: _1234567______

Please do not turn the page until 1:40.

Instructions
• This quiz contains 4 pages, including this cover page.

• Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.

• The quiz is closed book and closed notes.

• Please silence and put away all cell phones and other mobile or noise-making devices.

• Remove all hats, headphones, and watches.

• You have 60 (+10) minutes to complete this quiz.

Advice
• Read questions carefully before starting. Read all questions first and start where you feel

the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.

• Relax. You are here to learn.

Question Points Score
(1) Counters 12 12
(2) Routing Elements 10 10
(3) Shift Registers 9 9

Total: 31 31

2

Question 1: Counters [12 pts]

Implement the 3-bit “odd” counter using a minimal number of 2-input logic gates. It goes through

the state sequence: 𝟎𝟎𝟏 → 𝟎𝟏𝟏 → 𝟏𝟎𝟏 → 𝟏𝟏𝟏 → 001 → ⋯

(A) Complete the truth table. [3 pts] (B) Solve for the minimal logic. [6 pts]
(K-maps are optional,
 but will allow for more partial credit.)

PS2 PS1 PS0 NS2 NS1 NS0

0 0 0 X X X

0 0 1 0 1 1

0 1 0 X X X

0 1 1 1 0 1

1 0 0 X X X

1 0 1 1 1 1

1 1 0 X X X

1 1 1 0 0 1

(C) Briefly describe how could we simplify the hardware circuit even further. Hint: draw out the

current minimal logic circuit and look at what hardware might be unnecessary. [3 pts]

Because we are only cycling through odd numbers, PS0 is always 1, which does not need to be
stored. We could remove one DFF (one bit of state) and instead concatenate a 1 as the least
significant bit to the remaining two bits of state.

NS2 00 01 11 10

0 X 0 1 X 𝐍𝐒𝟐 =

1 X 1 0 X

NS1 00 01 11 10

0 X 1 0 X 𝐍𝐒𝟏 =

1 X 1 0 X

NS0 00 01 11 10

0 X 1 1 X 𝐍𝐒𝟎 =

1 X 1 1 X

3

Question 2: Routing Elements [10 pts]

We are creating a sequential circuit with 1-bit inputs (played), (win), and (draw/tie) and 𝑛-bit

output to accumulate the standings for a soccer/futbol team. When a team plays a game (P), they

accumulate 3 points for a win (WD̅), 1 point for a draw (D) and 0 points for a loss (W̅D̅); otherwise

(P̅), the point total remains the same.

(A) Draw out the circuit below. You can freely use registers, constants, 2:1 MUXes, and adders.

Make sure you label the corresponding selector bits for ports of routing elements. [6 pts]

(B) Now assume that we instantiate our circuit for a team that starts with = points. Based on

the SystemVerilog testbench below, what will the team’s final record and points total be?

[4 pts]

Wins: 1 Draws: 3 Losses: 1

 Points: 6

This testbench runs through all combinations 3’b000 to 3’b111 in order. Every other is not

played (P̅) and can be ignored. Of the games played (001, 011, 101, 111), these translate to

Loss, Draw, Win, Draw. There is one last clock cycle after the for-loop that remains at the

input combination 111 → Draw. Points = 3*Wins + Draws.

initial begin

 integer i;

 initial begin

 for (i = 0; i < 8; i++) begin

 {W, D, P} = i; @(posedge clk);

 end

 @(posedge clk); $stop();

end

4

Question 3: Shift Registers [9 pts]

In Lab 7, we created a 9-bit linear feedback shift register (LFSR) to generate “randomized”

opponent behavior. Let’s explore this idea of randomness a bit further by comparing the “optimal”

9-bit and 10-bit LFSRs, as given by the chart from Lab 7.

(A) Circle one: Which LFSR has the longer maximal state sequence: 9-bit / 10-bit. [1 pt]

(B) The goal in Lab 7 was to generate a 9-bit random number (0–511). Briefly describe how you

could get a 9-bit random number from the 10-bit LFSR. How much hardware is involved in

this process? [4 pts]

9-bit number: Can grab any 9 of the 10 bits in any well-defined order. Most simply, either
take the upper 9 bits or the lower 9 bits.

Hardware: Just wires to route/reorder the bits.

(C) If you had to decide between using either the “optimal” 9-bit LFSR or the “optimal” 10-bit

LFSR to produce a 9-bit random number sequence, which would you choose and why? [4 pt]

This is a somewhat open-ended question; the explanation matters much more than the choice.

Circle: 9-bit / 10-bit

Explain choice: Many possible explanations, including:

• 9-bit requires less hardware (one less DFF).

• 9-bit sequence doesn’t produce duplicates during its cycle, while the 10-bit
sequence will repeat each value twice during its (roughly twice as long) cycle – this
could actually be used to argue for either one being more “random” than the other.

• 9-bit is more intuitive and uses more natural connections.

