University of Washington - Computer Science \& Engineering
Spring 2023 Instructor: Justin Hsia 2023-05-30
CSE 369 QUIZ 3
Name:

## Student ID

Number:
$\qquad$

## Please do not turn the page until 1:40.

## Instructions

- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put your final answers in the boxes and blanks provided.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $60(+10)$ minutes to complete this quiz.


## Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

| Question | Points | Score |
| :--- | :---: | :---: |
| (1) Counters | 12 |  |
| (2) Routing Elements | 10 |  |
| (3) Shift Registers | 9 |  |
|  | $\mathbf{3 1}$ |  |

## Question 1: Counters [12 pts]

Implement the 3-bit "odd" counter using a minimal number of 2-input logic gates. It goes through the state sequence: $\mathbf{0 0 1} \boldsymbol{\rightarrow 0 1 1} \boldsymbol{\rightarrow 1 0 1} \boldsymbol{\rightarrow 1 1 1} \rightarrow 001 \rightarrow \cdots$
(A) Complete the truth table. [3 pts]
(B) Solve for the minimal logic. [6 pts]
(K-maps are optional, but will allow for more partial credit.)

| $\mathrm{PS}_{2}$ | $\mathrm{PS}_{1}$ | $\mathrm{PS}_{0}$ | $\mathrm{NS}_{2}$ | $\mathrm{NS}_{1}$ | $\mathrm{NS}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |  |
| 0 | 0 | 1 |  |  |  |
| 0 | 1 | 0 |  |  |  |
| 0 | 1 | 1 |  |  |  |
| 1 | 0 | 0 |  |  |  |
| 1 | 0 | 1 |  |  |  |
| 1 | 1 | 0 |  |  |  |
| 1 | 1 | 1 |  |  |  |


(C) Briefly describe how could we simplify the hardware circuit even further. Hint: draw out the current minimal logic circuit and look at what hardware might be unnecessary. [ 3 pts ]

## Question 2: Routing Elements [10 pts]

We are creating a sequential circuit with 1-bit inputs P (played), W (win), and D (draw/tie) and $n$-bit output $Q$ to accumulate the standings for a soccer/futbol team. When a team plays a game (P), they accumulate 3 points for a win (W $\overline{\mathrm{D}})$, 1 point for a draw (D) and 0 points for a loss ( $\overline{\mathrm{W}} \overline{\mathrm{D}}$ ); otherwise $(\overline{\mathrm{P}})$, the point total remains the same.
(A) Draw out the circuit below. You can freely use registers, constants, 2:1 MUXes, and adders. Make sure you label the corresponding selector bits for ports of routing elements. [6 pts]

(B) Now assume that we instantiate our circuit for a team that starts with $\mathrm{Q}=0$ points. Based on the SystemVerilog testbench below, what will the team's final record and points total be?
[4 pts]

```
initial begin
    integer i;
    initial begin
        for (i = 0; i < 8; i++) begin
            {W, D, P} = i; @(posedge clk);
        end
        @(posedge clk); $stop();
end
```

| Wins: | Draws: | Losses: |
| :--- | :--- | :--- |
|  | Points: |  |

## Question 3: Shift Registers [9 pts]

In Lab 7, we created a 9-bit linear feedback shift register (LFSR) to generate "randomized" opponent behavior. Let's explore this idea of randomness a bit further by comparing the "optimal" 9 -bit and 10-bit LFSRs, as given by the chart from Lab 7.
(A) Circle one: Which LFSR has the longer maximal state sequence: 9-bit / 10-bit. [1 pt]
(B) The goal in Lab 7 was to generate a 9 -bit random number (0-511). Briefly describe how you could get a 9 -bit random number from the 10 -bit LFSR. How much hardware is involved in this process? [4 pts]

| 9-bit number: |
| :--- |
|  |
| Hardware: |
|  |

(C) If you had to decide between using either the "optimal" 9-bit LFSR or the "optimal" 10-bit LFSR to produce a 9-bit random number sequence, which would you choose and why? [4 pt] This is a somewhat open-ended question; the explanation matters much more than the choice.

Circle: 9-bit / 10-bit
Explain choice:

