University of Washington - Computer Science & Engineering

Winter 2017 Instructor: Justin Hsia 2017-03-13

CSE 369 QUIZ 3

Name:	Perry	Perfect

UWNetID: _1234567_____

Please do not turn the page until 10:30.

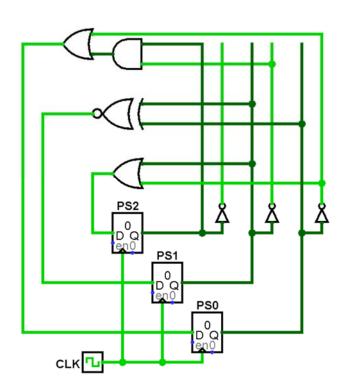
Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 35 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

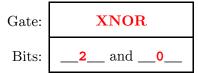
Question	Points	Score	
(1) Counters		12	12
(2) Shift Registers		11	11
(3) Routing Elements		9	9
	Total:	32	32


Question 1: Counters [12 pts]

Implement a counter that goes through the following state sequence: $000 \rightarrow 111 \rightarrow 110 \rightarrow 101 \rightarrow 001 \rightarrow 000 \rightarrow \dots$ using a minimal number of 2-input logic gates.

PS_2	\mathbf{PS}_1	\mathbf{PS}_0	NS_2	NS_1	NS_0
0	0	0	1	1	1
0	0	1	0	0	0
0	1	0	X	X	X
0	1	1	X	X	X
	0	0	X	X	X
1	0	1	0	0	1
1	1	0	1	0	1
1	1	1	1	1	0

1,162	t				
NS_2	00	01	11	10	
0	1	X	1	X	NS, = PSo + PS,
1	0	X	1	0	
\mathbf{NS}_1	00	01	11	10	N.C. DC Visus PS
0	1	X	0	X	NS = PS xnor PS,
1	0	X	1	0	most credit given for NS,= PSoPS, + PSoPS
\mathbf{NS}_0	00	01	11	10	
0	$\boxed{1}$	X	1	X	$Ns_0 = \overline{PS_0} + PS_2 \overline{PS_0}$
1	0	X	0	1	0 2 2


Wire crossing:

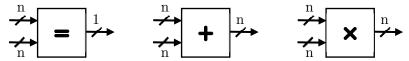
Question 2: Shift Registers [11 pts]

We have a 4-bit linear feedback shift register (LFSR) that goes through the following state sequence: $0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0101 \rightarrow 1011 \rightarrow \cdots$

- (A) <u>Circle one</u>: This LFSR is shifting bits to the **LEFT RIGHT**. [1 pt]
- (B) The bit that is shifted in is a function of two of the LFSR bits. We number the bits starting from 0 increasing from right to left (like standard binary). What is the name of the gate being used and which two bits are its inputs? [6 pt]

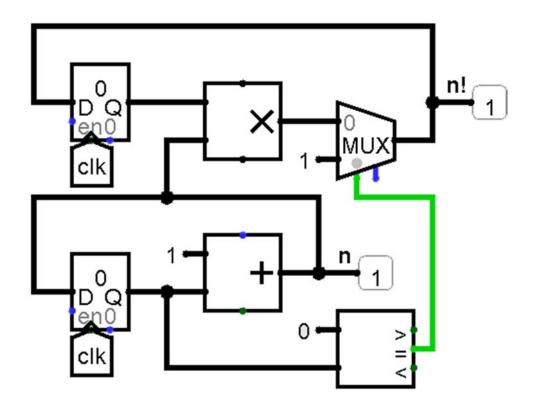
From the first transition, we see that we are shifting left (shifting in on the right) and that gate(0,0) = 1. The second transition tells us that gate(0,1) = 0 and that one of the bits is bit 0 (far right). All of the named two-input gates are associative, so gate(1,0) = gate(0,1) = 0. The third transition narrows the options for the 2^{nd} tap to bit 3 or bit 2. The fourth transition indicates that gate(1,1) = 1 and the 2^{nd} tap must be bit 2. Looking at the truth table, the gate is actually XNOR.

(C) Complete the Verilog code below to implement this LFSR. Feel free to use "state[i]? state[j]" to indicate the correct answer to part B. [4 pt]


Question 3: Routing Elements [9 pts]

Implement a circuit that computes the factorial function n! = n*(n-1)!. Note that it will take n clock cycles to compute n! and we will let it run infinitely (no stop condition).

<u>Note 1</u>: Both registers (after a Reset) start with value 0. Make sure that your circuit doesn't get stuck at the value 0. <u>Hint</u>: what's the title of this problem?


Note 2: Make sure that your n and n! bus values line up properly (other than 0! and 0).

Assume you can freely use gates and routing elements discussed in class plus the constants **0** and **1** and the following logic blocks:

Other working alternatives exist:

• Instead of the MUX, use an adder with the output of the comparator (though in reality we would need a zero-extender to match bit widths).

