University of Washington - Computer Science \& Engineering
 Winter 2019 Instructor: Justin Hsia 2019-03-12
 CSE 369 QUIZ 3

Name:

UWNetID:

Please do not turn the page until 11:40.

Instructions

- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put your final answers in the boxes and blanks provided.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 50 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) Decoders	12	
(2) Shift Registers	10	
(3) Luhn Algorithm	12	
	Total:	$\mathbf{3 4}$

Question 1: Decoders [12 pts]

We are building a small keypad-to-7seg decoder circuit in two parts. The keypad is 4 buttons arranged in a square. The signals $\mathrm{C}_{1}, \mathrm{C}_{0}, \mathrm{R}_{1}$, and R_{0} are high (1) only if a button in the corresponding column or row is being pushed. The 2-bit bus $\mathrm{K}\left(\mathrm{K}_{1}, \mathrm{~K}_{0}\right)$ represents which key is recognized (in binary). The Valid signal (V) is high when at least one key is being pressed.

(A) Complete the truth table. We give priority to C_{1} and R_{1}. [4 pt]

$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{0}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	\mathbf{V}	$\mathbf{K}_{\mathbf{1}}$	$\mathbf{K}_{\mathbf{0}}$
0	0	0	0	$\mathbf{0}$		
0	0	0	1	$\mathbf{0}$		
0	0	1	0	$\mathbf{0}$		
0	0	1	1	$\mathbf{0}$		
0	1	0	0	$\mathbf{0}$		
0	1	0	1	$\mathbf{1}$		
0	1	1	0	$\mathbf{1}$		
0	1	1	1	$\mathbf{1}$		
1	0	0	0	$\mathbf{0}$		
1	0	0	1	$\mathbf{1}$		
1	0	1	0	$\mathbf{1}$		
1	0	1	1	$\mathbf{1}$		
1	1	0	0	$\mathbf{0}$		
1	1	0	1	$\mathbf{1}$		
1	1	1	0	$\mathbf{1}$		
1	1	1	1	$\mathbf{1}$		

(B) In the space below, solve for the minimal logical expression (using 2-input gates) for \mathbf{V}. [4 pt]
(C) For the 7seg signal numbering and outputs shown above (lit/black $=1$), draw the minimal logic for $\mathbf{S}_{\mathbf{4}}$ in terms of $\mathrm{V}, \mathrm{K}_{1}$, and K_{0}. All signals should be off when $\mathrm{V}=0$. [4 pt]

K1 0
ко 0

Question 2: Shift Registers [10 pts]

We are using a 3-bit LFSR as a pseudo-random number generator by connecting q1 and q0 to a 2-input NOR gate. Assume we start in state 011.

(A) Circle one: This LFSR (look at Q) is shifting bits to the LEFT / RIGHT. [1 pt]
(B) How many distinct states do we end up visiting? What is the length of the cycle we end up in? [4 pt]

(C) Modify the LFSR to add Enable and Load signals and draw the circuit diagram below using logic gates and routing elements discussed in class. Give priority to Load. [5 pt]

- Make sure you label the corresponding selector bits for ports of routing elements.
- Assume the clock inputs are connected properly for you.

Load 回 向Enable

Question 3: Luhn Algorithm [12 pts]

The Luhn algorithm is a "mod 10 " formula used for validation of decimal numbers (like credit cards) that uses a "check digit" in the rightmost position. The validation algorithm is as follows:

1. From right to left, double every second digit.
2. Sum all of the digits.
3. The number is valid if the sum $\% 10=0$, invalid otherwise.

Example: | Digits: | $\mathrm{d}_{3}=9$ | $\mathrm{~d}_{2}=7$ | $\mathrm{~d}_{1}=6$ | check $=1$ |
| ---: | :---: | :---: | :---: | :---: |
| Double every other: | $\mathbf{1 8}$ | 7 | $\mathbf{1 2}$ | 1 |
| Sum digits: | $\mathbf{9}$ | 7 | $\mathbf{3}$ | 1 |

Here we will implement a Luhn verifier for 4 -digit numbers. You can freely add registers, constants, and the following logic blocks (with specified combinational delays):

(A) Using these parts, complete the fastest 4-digit Luhn verification circuit below. Assume the clock inputs are connected properly for you. [7 pts]

(B) What is the minimum value of the bus width n for this circuit? [2 pt]
(C) Assume $t_{\text {hold }}=10 \mathrm{ps}, t_{\text {setup }}=40 \mathrm{ps}, t_{\mathrm{C} 2 \mathrm{Q}}=70 \mathrm{ps}$ and $t_{\text {comparator }}=$ 55 ps . How long after a clock trigger does your circuit from Part A

