# University of Washington - Computer Science \& Engineering <br> Winter 2020 Instructor: Justin Hsia 2020-03-10 <br>  <br> Name: _Perry_Perfect <br> $\qquad$ <br> Student ID <br> Number: _1234567 <br> $\qquad$ <br> <br> Please do not turn the page until 11:40. 

 <br> <br> Please do not turn the page until 11:40.}

## Instructions

- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put your final answers in the boxes and blanks provided.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 40 minutes to complete this quiz.


## Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

| Question | Points | Score |
| :--- | :---: | :---: |
| (1) Building Blocks | 12 | 12 |
| (2) Shift Registers | 10 | 10 |
| (3) Sequential Computation | 10 | 10 |
| Total: | $\mathbf{3 2}$ | $\mathbf{3 2}$ |

## Question 1: Building Blocks [12 pts]

We want to build a binary-to-braille decoder circuit. Braille is represented by 6 dots, as shown below. Circles that are black/white represent LED that are on (1)/off (0), respectively. The binary-coded digit is given in bits $\mathrm{N}_{3}-\mathrm{N}_{0}$.


Implement the simplest two-level logic for an enabled circuit below for the top-left dot (TL). You may use any 1- to 3 -input logic gates discussed in the class.

- The dot should always be off (0) if Enable $=0$
- Your truth table will be graded.

| $\mathbf{N}_{\mathbf{3}}$ | $\mathbf{N}_{\mathbf{2}}$ | $\mathbf{N}_{\mathbf{1}}$ | $\mathbf{N}_{\mathbf{0}}$ | $\mathbf{T L}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | $\mathbf{X}$ |
| 1 | 0 | 1 | 1 | $\mathbf{X}$ |
| 1 | 1 | 0 | 0 | $\mathbf{X}$ |
| 1 | 1 | 0 | 1 | $\mathbf{X}$ |
| 1 | 1 | 1 | 0 | $\mathbf{X}$ |
| 1 | 1 | 1 | 1 | $\mathbf{X}$ |



$$
\begin{aligned}
T L & =N_{2}+N_{1}+\bar{N}_{3} N_{0}+N_{3} \overline{N_{0}} \\
& =N_{2}+N_{1}+\left(N_{3} \oplus N_{0}\right)
\end{aligned}
$$



## Question 2: Shift Registers [10 pts]

We are using a 3 -bit LFSR as a pseudo-random number generator by connecting qi and qu to a 2-input OR gate. As shown below (look at Q), we are shifting bits to the LEFT.

(A) Draw out the full state transition diagram (i.e., include ALL states) for this LFSR below: [4 pt]

(B) What are the "sink" states) of this LFSR? [1 pt]

$$
\operatorname{Sink}(\mathrm{s}): 000,111
$$

(C) Complete the Verilog implementation below. [3 pt]

```
module LFSR (Q, enable, reset, clk);
    input logic enable, reset, clk;
    output logic [2:0] Q;
    always_ff @(posedge clk)
        if ( reset ) // choose a state that yields the
            Q <= 3'b_010_; // longest non-repeating chain
        else if ( enable )
            Q <= { __Q[1] __, __Q[0]__, __Q[1] | Q[0]__ };
endmodule
```

(D) Is using OR in an LFSR a good choice? Briefly explain. [2 pt]

No. You are guaranteed to eventually end up in a sink state, which means you will always get the same "random" number afterwards.

## Question 3: Sequential Computation [10 pts]

Implement a circuit that computes the Fibonacci sequence $\mathbf{F}_{\mathrm{n}}=\mathbf{F}_{\mathrm{n}-1}+\mathbf{F}_{\mathrm{n}-2}$. Note that it will take about n clock cycles to compute $\mathrm{F}_{\mathrm{n}}$ and we will let it run infinitely (no stop condition).

- Both registers (after a Reset, which is not shown) start with value 0 , but you will need to make sure that your circuit doesn't get stuck there! It is suggested that you tackle this part last. Hint: you need to detect this very special situation (both registers with value 0 ).
- You can freely use gates and routing elements discussed in class plus the constants 0 and 1 and the following logic blocks (where w is the bus width of our Fibonacci circuit):


Two possible solutions: (the top has 1 cycle of output 0 while the bottom one doesn't)
(any solution that produced $1,1,2,3, \ldots$ after $0-2$ cycles of 0 were accepted)


Many other working alternatives exist:

- MUX could be placed on the input to the lower register or on the $\mathrm{F}_{\mathrm{n}-2}$ input to the adder.
- MUX behavior could be achieved with a variety of logical combinations, though using an adder instead usually led to a bus width mismatch (both inputs to the adder should be wbits wide, whereas the output of a comparator or 2-input logic gate is 1 -bit wide).
- We were lenient with bit-widths of constants and with the combinational logic. 2 w -to-1 gates were accepted (particularly 2 w -to-1 OR or NOR).

