
University of Washington – Computer Science & Engineering
Winter 2020 Instructor: Justin Hsia 2020-03-10

Name: _________________________
Student ID

Number: ____________

Please do not turn the page until 11:40.

Instructions
• This quiz contains 4 pages, including this cover page.
• Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.
• The quiz is closed book and closed notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.
• Remove all hats, headphones, and watches.
• You have 40 minutes to complete this quiz.

Advice
• Read questions carefully before starting. Read all questions first and start where you feel

the most confident to maximize the use of your time.
• There may be partial credit for incomplete answers; please show your work.
• Relax. You are here to learn.

Question Points Score
(1) Building Blocks 12
(2) Shift Registers 10
(3) Sequential Computation 10

Total: 32

2

Question 1: Building Blocks [12 pts]

We want to build a binary-to-braille decoder circuit. Braille is represented by 6 dots, as
shown below. Circles that are black/white represent LEDs that are on (1)/off (0), respectively.
The binary-coded digit is given in bits N –N .

Implement the simplest two-level logic for an enabled circuit below for the top-left dot (TL).
You may use any 1- to 3-input logic gates discussed in the class.

• The dot should always be off (0) if Enable = 0
• Your truth table will be graded.

N3 N2 N1 N0 TL

0 0 0 0 X

0 0 0 1 1

0 0 1 0 0

0 0 1 1 X

0 1 0 0 0

0 1 0 1 X

0 1 1 0 X

0 1 1 1 X

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

3

Question 2: Shift Registers [10 pts]

We are using a 3-bit LFSR as a pseudo-random number generator by connecting q1 and q0 to a
2-input OR gate. As shown below (look at Q), we are shifting bits to the LEFT.

(A) Draw out the full state transition diagram (i.e., include ALL states) for this LFSR below:

[4 pt]

(B) What are the “sink” state(s) of this LFSR? [1 pt]

Sink(s): 000, 111

(C) Complete the Verilog implementation below. [3 pt]

(D) Is using OR in an LFSR a good choice? Briefly explain. [2 pt]

module LFSR (Q, enable, reset, clk);
 input logic enable, reset, clk;
 output logic [2:0] Q;

 always_ff @(posedge clk)
 if (reset) // choose a state that yields the

 Q <= 3'b______; // longest non-repeating chain
 else if (enable)

 Q <= { ____________, ____________, ____________ };

endmodule

4

Question 3: Sequential Computation [10 pts]

Implement a circuit that computes the Fibonacci sequence Fn = Fn-1 + Fn-2. Note that it
will take about n clock cycles to compute Fn and we will let it run infinitely (no stop condition).

• Both registers (after a Reset, which is not shown) start with value 0, but you will need to
make sure that your circuit doesn’t get stuck there! It is suggested that you tackle this
part last. Hint: you need to detect this very special situation (both registers with value 0).

• You can freely use gates and routing elements discussed in class plus the constants 0 and
1 and the following logic blocks (where w is the bus width of our Fibonacci circuit):

w

w

1
w

w

w
w

w

w

