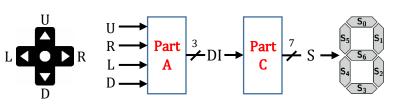
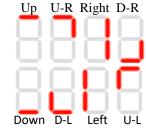


Please do not turn the page until 11:40.

Instructions

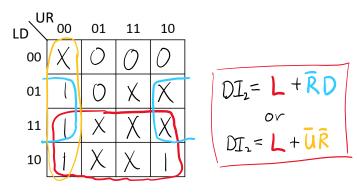
- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put your final answers in the boxes and blanks provided.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 60 (+10) minutes to complete this quiz.

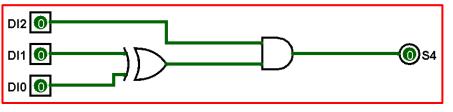

Advice


- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) Decoders	13	13
(2) Routing Elements	10	10
(3) Shift Registers	10	10
Total:	33	33

Question 1: Decoders [13 pts]


We are building a **7-seg decoder circuit** for a **directional pad** (D-pad), which has a push-button (1 when pushed) for each of the 4 cardinal directions: U(p), R(ight), L(eft), and D(own). There is a physical restriction that at most two neighboring buttons can be pressed simultaneously (*e.g.*, URLD is possible but not URLD or URLD), leading to 8 possible indicated directions on the 3-bit bus DI, numbered clockwise from Up = 0b000 to Up-Right = 0b001 around to Up-Left = 0b111.


(A) Complete the truth table. [4 pt]

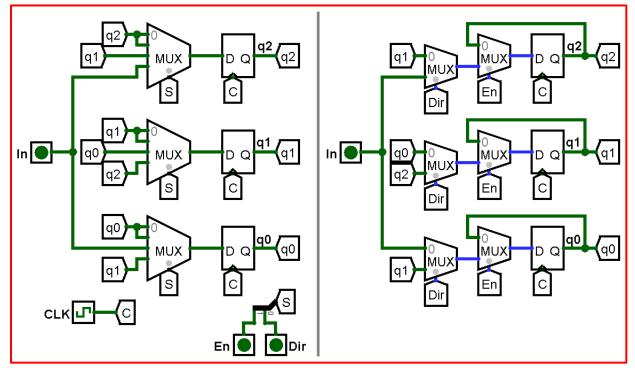
(B) In the space below, solve for the minimal logical expression for **DI**₂. [4 pt]

U	R	L	D	DI ₂	DI1	DIo
0	0	0	0	Х	Х	X
0	0	0	1	1	0	0
0	0	1	0	1	1	0
0	0	1	1	1	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	1
0	1	1	0	Х	X	X
0	1	1	1	Х	X	X
1	0	0	0	0	0	0
1	0	0	1	Х	Х	Х
1	0	1	0	1	1	1
1	0	1	1	Х	Х	X
1	1	0	0	0	0	1
1	1	0	1	Х	X	X
1	1	1	0	Х	X	X
1	1	1	1	Х	X	X

(C) For the 7-seg signal numbering and outputs shown above (lit/red = 1), draw the minimal logic for S₄ in terms of DI₂, DI₁, and DI₀. [3 pt]

DI ₂	DI ₁	DI ₀	S4
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

(D) *Briefly* describe what's problematic about this D-pad decoder circuit. [2 pts]

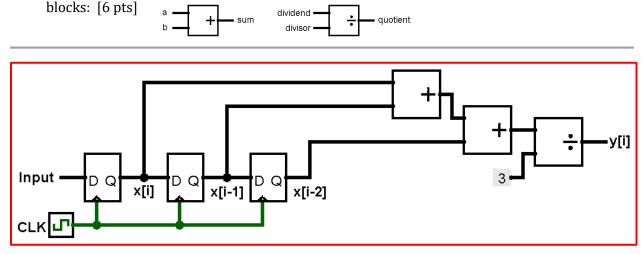

No buttons pressed (\overline{URLD}) is a don't care so it will be a potentially unknown output and, regardless of what it is, it will indicate a direction when nothing is being pressed. Should add a Valid output signal to this system.

Question 2: Routing Elements [10 pts]

We are creating an *enabled* 3-bit bidirectional shifter (can shift in both directions), which takes input bits **En** (short for Enable), **Dir**, and **In**. When enabled, we shift the current bits either to the right (*i.e.*, into the less significant bit) when **Dir** = 1 or to the left when **Dir** = 0 and shift in **In**. When not enabled, the state bits remain the same.

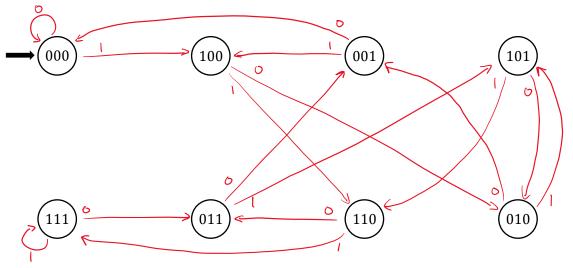
(A) Draw the circuit diagram below using *logic gates* and *routing elements* discussed in class.
Assume the clock inputs are connected properly for you. You may use multiple copies of a signal name (*e.g.*, q2, q1, q0), which are assumed connected to the same net/wire. [5 pt]

Two possible solutions shown below:



(B) In the Verilog test bench below, fill in the blanks to indicate how the state of our bidirectional shifter updates. [5 pts]

Question 3: Shift Registers [10 pts]


A **boxcar** (or moving average) **filter** computes the average of the last *k* samples and can be used to smooth out sudden input spikes (*i.e.*, it's a low-pass filter).

(A) Draw a circuit below that computes the moving average of the last 3 inputs, *i.e.*, k = 3 and $y_i = (x_i + x_{i-1} + x_{i-2})/3$, for a signal x, where x_{i-1} is the value of x_i from the previous clock cycle and so on. The given register is there for synchronization; you should *not* connect anything directly to Input. You can use registers, constants, and any number of the following logic

(B) The time delay portion of the boxcar filter (*i.e.*, computing x_i, x_{i-1}, and x_{i-2}) can be considered a shift register! Assuming 1-bit signals and using {x_i, x_{i-1}, x_{i-2}} as our state bits and Input as our input, complete the corresponding Moore machine: the state names correspond to the output state bits, so only the value of Input should be shown on the transition arrows. [4 pts] Right shifting!

