
University of Washington – Computer Science & Engineering

Winter 2024 Instructor: Justin Hsia 2024-03-05

Name: _Molly_Model_______________
Student ID

Number: _1234567______

Please do not turn the page until 11:40.

Instructions
• This quiz contains 4 pages, including this cover page.

• Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.

• The quiz is closed book and closed notes.

• Please silence and put away all cell phones and other mobile or noise-making devices.

• Remove all hats, headphones, and watches.

• You have 60 (+10) minutes to complete this quiz.

Advice
• Read questions carefully before starting. Read all questions first and start where you feel

the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.

• Relax. You are here to learn.

Question Points Score
(1) Decoders 13 13
(2) Routing Elements 10 10
(3) Shift Registers 10 10

Total: 33 33

2

Question 1: Decoders [13 pts]

 We are building a 7-seg decoder circuit for a directional pad (D-pad), which has a push-button

(1 when pushed) for each of the 4 cardinal directions: U(p), R(ight), L(eft), and D(own). There is a

physical restriction that at most two neighboring buttons can be pressed simultaneously

(e.g., URL̅D̅ is possible but not U̅RLD̅ or URLD̅), leading to 8 possible indicated directions on the 3-

bit bus DI, numbered clockwise from Up = 0b000 to Up-Right = 0b001 around to Up-Left = 0b111.

(A) Complete the truth table. [4 pt]

(B) In the space below, solve for the minimal logical

expression for 𝐃𝐈𝟐. [4 pt]

(C) For the 7-seg signal numbering and outputs shown above

(lit/red = 1), draw the minimal logic for 𝐒𝟒 in terms of

DI2, DI1, and DI0. [3 pt]

(D) Briefly describe what’s problematic about this D-pad decoder circuit. [2 pts]

No buttons pressed (U̅R̅L̅D̅) is a don’t care so it will be a potentially unknown output and,
regardless of what it is, it will indicate a direction when nothing is being pressed. Should add a
Valid output signal to this system.

U R L D DI2 DI1 DI0

0 0 0 0 X X X

0 0 0 1 1 0 0

0 0 1 0 1 1 0

0 0 1 1 1 0 1

0 1 0 0 0 1 0

0 1 0 1 0 1 1

0 1 1 0 X X X

0 1 1 1 X X X

1 0 0 0 0 0 0

1 0 0 1 X X X

1 0 1 0 1 1 1

1 0 1 1 X X X

1 1 0 0 0 0 1

1 1 0 1 X X X

1 1 1 0 X X X

1 1 1 1 X X X

DI2 DI1 DI0 S4

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

U

R L

D
 Down D-L Left U-L

Part

A
Part

C

U
R

L

D

S
7

DI
3

Up U-R Right D-R

UR

LD

3

Question 2: Routing Elements [10 pts]

We are creating an enabled 3-bit bidirectional shifter (can shift in both directions), which takes

input bits En (short for Enable), Dir, and In. When enabled, we shift the current bits either to the

right (i.e., into the less significant bit) when Dir = 1 or to the left when Dir = 0 and shift in In. When

not enabled, the state bits remain the same.

(A) Draw the circuit diagram below using logic gates and routing elements discussed in class.

Assume the clock inputs are connected properly for you. You may use multiple copies of a

signal name (e.g., q2, q1, q0), which are assumed connected to the same net/wire. [5 pt]

Two possible solutions shown below:

(B) In the Verilog test bench below, fill in the blanks to indicate how the state of our bidirectional

shifter updates. [5 pts]

initial begin // state: q2q1q0

 En <= 0; Dir <= 0; In <= 0; // state: 010

 @(posedge clk); En <= 1; // state: 010 (disabled)

 // state: 100 (<< in 0)

 @(posedge clk); {Dir, In} <= 2'd3;

 @(posedge clk); In <= 0; // state: 110 (>> in 1)

 @(posedge clk); En <= 0; // state: 011 (>> in 0)

 @(posedge clk); $stop(); // state: 011 (disabled)

end

4

Question 3: Shift Registers [10 pts]

A boxcar (or moving average) filter computes the average of the last 𝑘 samples and can be used to

smooth out sudden input spikes (i.e., it’s a low-pass filter).

(A) Draw a circuit below that computes the moving average of the last 3 inputs, i.e., 𝑘 = 3 and

yi=(xi+xi-1+xi-2)/3, for a signal x, where xi-1 is the value of xi from the previous clock cycle

and so on. The given register is there for synchronization; you should not connect anything

directly to Input. You can use registers, constants, and any number of the following logic

blocks: [6 pts]

An alternative solution would be to divide all signals first before summing them together

(5 logic blocks total).

(B) The time delay portion of the boxcar filter (i.e., computing xi, xi-1, and xi-2) can be considered

a shift register! Assuming 1-bit signals and using {xi, xi-1, xi-2} as our state bits and Input as

our input, complete the corresponding Moore machine: the state names correspond to the

output state bits, so only the value of Input should be shown on the transition arrows. [4 pts]

Right shifting!

000 100 001 101

111 011 110 010

