University of Washington - Computer Science \& Engineering
 Winter 2024 Instructor: Justin Hsia 2024-03-05

 CSE 369 QUIZ 3

 CSE 369 QUIZ 3}

Name: \qquad
Student ID
Number: \qquad

Please do not turn the page until 11:40.

Instructions

- This quiz contains 4 pages, including this cover page.
- Show scratch work for partial credit, but put your final answers in the boxes and blanks provided.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have $60(+10)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) Decoders	13	
(2) Routing Elements	10	
(3) Shift Registers	10	
	$\mathbf{3 3}$	

Question 1: Decoders [13 pts]

We are building a 7 -seg decoder circuit for a directional pad (D-pad), which has a push-button (1 when pushed) for each of the 4 cardinal directions: $U(p), R(i g h t), L(e f t)$, and $D(o w n)$. There is a physical restriction that at most two neighboring buttons can be pressed simultaneously (e.g., UR $\bar{L} \bar{D}$ is possible but not $\bar{U} R L \bar{D}$ or URL \bar{D}), leading to 8 possible indicated directions on the 3bit bus DI, numbered clockwise from $U p=0 b 000$ to $U p-R i g h t=0 b 001$ around to $U p-L e f t=0 b 111$.

(A) Complete the truth table. [4 pt]
(B) In the space below, solve for the minimal logical expression for $\mathbf{D I}_{2}$. [4 pt]
(C) For the 7-seg signal numbering and outputs shown above (lit/red = 1), draw the minimal logic for \mathbf{S}_{4} in terms of $\mathrm{DI}_{2}, \mathrm{DI}_{1}$, and DI_{0}. [3 pt]

U	R	L	D	DI_{2}	DI_{1}	DI_{0}
0	0	0	0	X		
0	0	0	1	1		
0	0	1	0	$\mathbf{1}$		
0	0	1	1	1		
0	1	0	0	$\mathbf{0}$		
0	1	0	1	$\mathbf{0}$		
0	1	1	0	X		
0	1	1	1	X		
1	0	0	0	$\mathbf{0}$		
1	0	0	1	X		
1	0	1	0	$\mathbf{1}$		
1	0	1	1	X		
1	1	0	0	$\mathbf{0}$		
1	1	0	1	X		
1	1	1	0	X		
1	1	1	1	X		

DIO 0
(D) Briefly describe what's problematic about this D-pad decoder circuit. [2 pts]

Question 2: Routing Elements [10 pts]

We are creating an enabled 3-bit bidirectional shifter (can shift in both directions), which takes input bits En (short for Enable), Dir, and In. When enabled, we shift the current bits either to the right (i.e., into the less significant bit) when Dir $=1$ or to the left when Dir $=0$ and shift in In. When not enabled, the state bits remain the same.
(A) Draw the circuit diagram below using logic gates and routing elements discussed in class. Assume the clock inputs are connected properly for you. You may use multiple copies of a signal name (e.g., q2, q1, q0), which are assumed connected to the same net/wire. [5 pt]

(B) In the Verilog test bench below, fill in the blanks to indicate how the state of our bidirectional shifter updates. [5 pts]

```
initial begin
// state: q2q_qu
    En <= 0; Dir <= 0; In <= 0;
    @(posedge clk); En <= 1;
// state:
```

\qquad

```
    @(posedge clk); {Dir, In} <= 2'd3;
    @(posedge clk); In <= 0;
    // state: _
    @(posedge clk); En <= 0;
// state:
// state:
    L
end
```


Question 3: Shift Registers [10 pts]

A boxcar (or moving average) filter computes the average of the last k samples and can be used to smooth out sudden input spikes (i.e., it's a low-pass filter).
(A) Draw a circuit below that computes the moving average of the last 3 inputs, i.e., $k=3$ and $\mathbf{y}_{i}=\left(\mathbf{x}_{\mathbf{i}}+\mathbf{x}_{\mathrm{i}-1}+\mathbf{x}_{\mathrm{i}-2}\right) / 3$, for a signal \mathbf{x}, where $\mathbf{x}_{\mathrm{i}-1}$ is the value of $\mathbf{x}_{\mathbf{i}}$ from the previous clock cycle and so on. The given register is there for synchronization; you should not connect anything directly to Input. You can use registers, constants, and any number of the following logic blocks: [6 pts]

(B) The time delay portion of the boxcar filter (i.e., computing $\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{i - 1}}$, and \mathbf{x}_{i-2}) can be considered a shift register! Assuming 1-bit signals and using $\left\{\mathbf{x}_{i}, \mathbf{x}_{\mathbf{i - 1}}, \mathbf{x}_{\mathbf{i}-2}\right\}$ as our state bits and Input as our input, complete the corresponding Moore machine: the state names correspond to the output state bits, so only the value of Input should be shown on the transition arrows. [4 pts]

100

101
(111)

010

