
EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Design of Digital
Circuits and Systems
SystemVerilog Review & Tips

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Lecture Outline

❖ Course Introduction

❖ Course Policies

❖ Hardware Description Language

❖ SystemVerilog Review & Tips

2

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Introductions: Course Staff

❖ Your Instructor: just call me Justin

▪ CSE Associate Teaching Professor

▪ From California (UC Berkeley and the Bay Area)

▪ Raising a toddler takes up energy and dictates my schedule

❖ TAs:

▪ Available in lecture, office hours, and discussion board

▪ An invaluable source of information and help

❖ Get to know us – we are here to help you succeed!

3

Colton Deepti Gayathri Jared Lancelot Matthew

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Introductions: Students

❖ 80 students registered, split across ECE and CSE

▪ Different perspectives; can learn a lot from each other!

▪ If you know others interested in adding, use the UW system
as space becomes available (no add codes)

❖ Expected background

▪ Prereq: EE271 or CSE369 – construction of synchronous
digital systems (combinational + sequential logic), timing
introduction, SystemVerilog introduction

▪ Prereq: EE205 or EE215 – familiarity with circuits

4

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Course Motivation

❖ More advanced digital logic design

▪ Higher-level circuit design and
analysis techniques

▪ Interfacing with various
devices/peripherals

▪ How to implement algorithms
in hardware

▪ Practical timing analysis

▪ “Verilog finishing school”

5

Harris and Harris. “Digital Design
and Computer Architecture” 2nd ed.

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Course Motivation

❖ Heavy computational loads have put us in a golden
age of hardware specialization

▪ Tailor your chip architecture to the characteristics of a
stable workload

▪ More and more companies are building specialized chips

6

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Course Motivation

❖ Example: FPGAs could replace GPUs in many deep
learning applications

▪ https://bdtechtalks.com/2020/11/09/fpga-vs-gpu-deep-
learning/

▪ FPGAs have advantages in terms of power consumption,
environmental robustness, and lifespan

▪ “FPGA is a type of processor that can be customized after
manufacturing, which makes it more efficient than generic
processors.”

▪ “But the problem with FPGAs is that they are very hard to
program.” 😢

7

https://bdtechtalks.com/2020/11/09/fpga-vs-gpu-deep-learning/

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Technical Communication

❖ Many of you are graduating soon!

▪ Going off to do and build wonderful things

▪ Try as you might, you can’t really avoid society and other
people

❖ It’s no longer good enough to just get something
working – you have to be able to explain it

▪ Working in a group/team

▪ Someone taking over as maintainer

▪ Convince a client or venture capitalist or funding agency or
students

❖ The lab reports and demos might seem tedious at
first, but are valuable practice!

8

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse371/24sp/syllabus.html

❖ Hardware Description Language

❖ SystemVerilog Review & Tips

9

https://courses.cs.washington.edu/courses/cse371/24sp/syllabus.html

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Course Meetings

❖ Lectures

▪ Lecture slides found on the website schedule

▪ Group work most lectures – with TAs available to help!

▪ “Worksheets” available for note-taking and group work

• Feel free to decline if you don’t want one – saves trees 🌲

❖ Office Hours and Lab Demos

▪ Live demo using remote FPGA lab (LabsLand) and answering
TA questions
• Will support both in-person (ECE 365) and remote demos (Zoom)

• When a TA is available, lab demo times are also office hours

▪ Office hours will use a Google Sheet queuing system (Tools
→ Office Hours Queue)

10

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Grading

❖ Labs (50%)

▪ 5 regular labs and 1 “final project”

▪ Combination of lab reports, code submission, and lab demos

❖ Homework (20%)

▪ Combination of theoretical and coding questions

▪ Interspersed between the labs

❖ Quizzes (30%)

▪ 5 roughly equally weighted quizzes, synced with homework

▪ At end of lectures (exact dates subject to change)

▪ Uploaded and graded in Gradescope

❖ “Straight-scale” grading scheme
11

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Collaboration Policy

❖ Complete your work as permitted (either individually
or with partner/group)

▪ Don’t attempt to gain credit for something you didn’t do and
don’t help others do so either

❖ OK:

▪ Discussing/studying lectures and/or course material

▪ High-level discussion of general approaches

▪ Help with error messages, tools peculiarities, etc.

❖ Not OK:

▪ Work in a larger group than permitted

▪ Giving away solutions or having someone else (human or AI)
do your assignment for you

12

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Collaboration Notes

❖ Make sure to add your groupmate(s) to your
submissions in Gradescope

❖ Working in a group isn’t a guarantee for success

▪ Don’t just split up the work: work simultaneously or at least
communicate frequently (two brains are better than one!)

❖ We will provide GitLab repos for your convenience

❖ See the Collaboration page on the website (Course
Info → Collaboration) for more info

13

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Deadlines

❖ Labs reports & code are submitted via Gradescope
Fridays before 11:59 pm

▪ Lateness is counted in days and cannot be submitted more
than 2 days late (Sun 11:59 pm)

▪ 6 late day tokens; 10% penalty for each late day after that

❖ 15-min lab demos within a week of report deadline

▪ Usually in assigned slot (sign-up process)

❖ Homework cannot be submitted more than 1 day late

▪ Solutions released to help you study for quizzes

14

Please talk to a staff member (preferably Justin) about
extenuating circumstances as soon as they come up

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

To-do List

❖ Website:
https://courses.cs.washington.edu/courses/cse371/24sp/

▪ Read over course policies and HW/Lab Requirements PDF

▪ Fill out pre-course survey (due 3/29)

❖ Discussion: https://edstem.org/us/courses/56772/

❖ Install Quartus & ModelSim on your machine

❖ Register on LabsLand

❖ Look for partner(s) for homework and lab

▪ Figure this out before signing up for a lab demo slot

❖ Homework 1 (4/1) & Lab 1 (4/5) posted today
15

https://courses.cs.washington.edu/courses/cse371/24sp/
https://edstem.org/us/courses/56772/

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Lecture Outline

❖ Course Introduction

❖ Course Policies

❖ Hardware Description Language

❖ SystemVerilog Review & Tips

16

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Hardware Description Language (HDL)

❖ HDL is a specialized computer language used to
describe the structure and behavior of digital logic
circuits

▪ Useful for rapid prototyping of digital hardware

❖ Comparison with programming language (e.g., C)

▪ Describes hardware instead of software

▪ Intrinsically parallel instead of sequential

▪ Includes explicit notion of time instead of just instructions

▪ Compiled to target FPGAs and ASICs via netlists (more
specific) instead of compiled to target CPUs via machine
code (more general)

17

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Electronic Design Automation (EDA)

❖ EDA is a type of computer-aided design (CAD) specific
to designing electronic systems

▪ EDA tools allow for synthesis and simulation

❖ Synthesis: Compile HDL code into a netlist (i.e., list of
electronic components and wires that connect them)

❖ Simulation: Apply inputs to the simulated circuit so
we can check output for correctness without
involving or endangering hardware

▪ Tracks the state of each structural element, handles the
interactions between concurrent elements, and models the
passage of time

18

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Design Flow Using Gates

❖ Design of a synchronous digital system using gates:

1) Write a specification

2) If necessary, partition the design into smaller parts and write a
specification for each part

3) From the specification, draw a state machine diagram

• Minimize the number of states when possible

4) Assign a binary encoding to represent each state

5) Derive the next state and output logic

• Optimize the logic to minimize the number of gates needed

6) Choose a suitable placement for the gates to optimize
integrated circuit reuse and distance on printed circuit board

7) Design the routing between the integrated circuits

19

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

FPGA-Based Design Flow

20Source: Figure 2.3 from "FPGA Prototyping" by P. Chu

refinement and
programming

process

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

FPGA-Based Design Flow

21Source: Figure 2.3 from "FPGA Prototyping" by P. Chu

validation
process

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Quartus/ModelSim/LabsLand Demo

❖ Using threeOnes FSM from 271/369

▪ Quartus/LabsLand and ModelSim have separate compilations

▪ Clock divider is NOT FOR SIMULATION

▪ Simulations can be run from a .do file or from individual ModelSim
commands

▪ Submodule signals can be added to waveforms!

▪ Logical correctness can still lead to unexpected/unintuitive behaviors…

❖ For more, see “ModelSim Usage Guide” on website

22

00 01 10

1/0

0/0

1/0

0/0

0/0 1/1

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Technology

Break
23

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Topic Outline

❖ Course Introduction

❖ Course Policies

❖ Hardware Description Language

❖ SystemVerilog Review & Tips

▪ One of two leading HDLs along with VHDL-2019

24

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

HDL Organization

❖ Most problems are best solved with multiple pieces –
how to best organize your system and code?

❖ Everything is computed in parallel

▪ We use routing elements (next lecture) to select between
(or ignore) multiple outcomes/parts

▪ This is why we use block diagrams and waveforms

❖ A module is not a function, it is closest to a class

▪ Something that you instantiate, not something that you call
– hardware cannot appear and disappear spontaneously

▪ Should treat modules as resource managers rather than
temporary helpers
• This can include having internal modules

25

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

HDL Implementation & Testing

1) Create individual submodules

2) Create submodules test benches – test as usual

▪ CL – run through all input combinations

▪ SL – take every transition that you care about

3) Create top-level module

▪ Create instance of each submodule

▪ Create wires/nets to connect signals between submodules,
inputs, and outputs

4) Create top-level test bench

▪ Goal is to check the interconnections between submodules
– does input/state change in one submodule trigger the
expected change in other submodules?

26

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Justin’s SystemVerilog Tips

❖ Always plan out your design before you ever touch
your keyboard

▪ Block diagram naturally maps into module port lists

❖ Always think of the underlying hardware when you
write your code

1) Structural: lower-level modeling of gate-level connections

2) Behavioral: higher-level modeling of logical behaviors

❖ Most modules are organized similarly, so develop and
use coding patterns

❖ Comment your code and test thoroughly as you go

❖ Pay attention to compiler warnings and errors
27

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

SystemVerilog Review Question

❖ Will the following compile? Is there a difference?

▪ logic v, w, x, y, z;
and g1 (x, v, w);
xor g2 (y, v, w);
nor g3 (z, x, y);

▪ logic v, w, x, y, z;
nor g3 (z, x, y);
and g1 (x, v, w);
xor g2 (y, v, w);

▪ and g1 (x, v, w);
logic v, w, x, y, z;
xor g2 (y, v, w);
nor g3 (z, x, y);

28

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

271/369 SystemVerilog Refresher

❖ Combinational logic:

▪ Usually in assign or always_comb blocks and use blocking
assignment (=)

▪ Implicit sensitivity list – updates anytime any input changes

▪ Testbenches for CL should just cycle through all input
combinations at fixed time intervals (e.g., #20;)

❖ Sequential logic:

▪ Usually in always_ff blocks and use non-blocking
assignment (<=)

▪ Explicit sensitivity list – usually @(posedge clk)

▪ Testbenches for SL should take every transition that you
care about, achieved by changing inputs every clock cycle

29

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Blocking vs. Nonblocking Assignment

❖ Blocking statement (=): the effects of these
statements are “evaluated” sequentially

❖ Nonblocking statement (<=): the effects of these
statements “evaluated” in parallel

❖ Exercise: draw out implied hardware

30

always_ff @ (posedge clk)
begin

b = a;
c = b;

end

always_ff @ (posedge clk)
begin

b <= a;
c <= b;

end

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

271/369 SystemVerilog Refresher

❖ We generally default to using logic for all signals,
which is a 4-state data type that can be used as either
a net or variable

▪ Possible states (logic defaults to X):
• 0 = zero, low, FALSE

• 1 = one, high, TRUE

• X = unknown, uninitialized, contention (conflict)

• Z = floating (disconnected), high impedance

▪ Nets (e.g., wire) transmit values and variables (e.g., reg)
store data

31

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

271/369 SystemVerilog Refresher

❖ Multiple signals can be organized under the same
name as a bus or array

▪ A bus, also known as a vector or packed array, is a collection
of a single data type
• e.g., logic [31:0] divided_clocks;

▪ “Regular” array syntax is known as an unpacked array
• e.g., logic an_unpacked_array[4:0];

▪ Multidimensional arrays can be combinations of packed and
unpacked dimensions
• e.g., logic [3:0] two_D_array[4:0];

• Dimensions accessed left to right, starting with unpacked

▪ Numbering matters (i.e., [𝑛-1:0] ≠ [0:𝑛-1])

32

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Review: Integers in Computing

❖ Unsigned integers follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

▪ In 𝑛 bits, represent integers 0 to 2𝑛 − 1

❖ Signed integers use Two’s Complement representation

▪ bw−1 has weight −2w−1, other bits have usual weights +2i

▪ In 𝑛 bits, represent integers −2𝑛−1 to 2𝑛−1 − 1

▪ Most significant bit acts as a sign bit (0 = pos, 1 = neg)

▪ Handy negation procedure: take the bitwise complement
and then add one (~x + 1 == -x)

❖ ⚠️ The choice affects the behavior of operations
such as bit extension, shifting, and comparisons

33

. . . b0bw-1 bw-2

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

271/369 SystemVerilog Refresher

❖ Multi-bit constants: <n>'<s>#…#
▪ <n> is width (unsized by default)

▪ <s> is signed designation (omit or ‘s’)

▪ is radix/base specifier (decimal by default)

▪ All letters are case-insensitive, _ can be used to add spaces

❖ Compiler will usually warn you if there is a size mismatch

▪ Can “cast” using #'(<sig>) syntax

34

Literal Width Base Bits

3'd6

6'o42

8’hAB

Literal Width Base Bits

42

'b101

-3'd5

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Basic Operators

❖ Possibly new:

▪ 371 % 271→ 100

▪ 2**3→ 8

35

Type Symbol Description

Arithmetic + addition
- subtraction

* multiplication

/ division

% modulus

** exponentiation

Shift >> logical rightshift
<< logical left shift

>>> arithmetic rightshift

<<< logical left shift

Relational > greater than
< less than

>= greater than or equalto

<= less than or equalto

Equality == equality
!= inequality

=== case equality

!== case inequality

Bitwise ~ bitwise negation
& bitwise and

| bitwise or

^ bitwise xor

Logical ! logical negation
&& logical and

| | logical or

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Ternary Operator

❖ Conditional assignment

▪ select ? <then_expr> : <else_expr>
• If select is true, then evaluates to <then_expr>, otherwise evaluates

to <else_expr>

▪ What does this look like in hardware?

❖ Example: tristate buffer

▪ enable ? in : 'bZ
• When enabled, pass the input to the output, otherwise be high

impedance

36

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Bit Manipulation

❖ Concatenation: {sig, …, sig}

▪ Ordering matters; result will have combined widths of all
signals

❖ Replication operator: {n{m}}

▪ repeats value m, n times

❖ Exercise: arithmetic right shift preserves the sign bit

37

logic [7:0] x = <some 8-bit constant>;
// replicate the behavior of y = x >>> 3
assign y =

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

“Looping”

❖ Code is compiled to hardware, so no execution

▪ “Loops” must be statically unrolled into multiple statements

▪ Loops are just for convenience in code writing

❖ repeat (#) <statement(s)>

▪ Makes # copies of statement(s)

❖ for (i=0; i<#; i++) <statement(s)>

▪ Makes # copies of statement(s) that vary based on i

❖ generate (see reference docs)

▪ More “powerful” for-loop typically used for:
1) Module instantiation

2) Changing the structure of parameterized modules

3) Functional and formal verification using assertions
38

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Modules

❖ “Black boxes” that we define and instantiate that
form the basic building blocks of our design hierarchy

▪ Ports form the connections between a module and its
environment
• Ports have directionality (input, output, inout), which can be

declared within the module or within the port list

39

module tristate(out, in, enable);
input logic in, enable;
output tri out;

assign out = enable ? in : 'Z;
endmodule

module tristate(output tri out,
input logic in,
input logic enable);

assign out = enable ? in : 'Z;
endmodule

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Module Instantiation

❖ Name an instance and define its port connections
▪ <type> <name> (<port connections>);

❖ Assume we have:

1) Positional connections:

2) Named/explicit connections:

3) .name implicit connection:

40

logic in, enable; tri out;

// must follow defined port ordering
// signal names can be anything
tristate my_tri(out, in, enable);

// any ordering & names allowed
tristate my_tri(.out(out), .in(in), .enable(enable));

// signal and port names must match exactly
tristate my_tri(.out, .in, .enable);

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Parameters

❖ A parameter is a named constant

▪ Typically used for widths and timing

❖ A parameterized module:
▪ module <name> #(<parameter list>) (<port list>);

▪ Parameters should be given default values
• e.g., #(parameter N = 8)

❖ Extra exercises:

▪ Define a parameterized tristate (tristate buffer)

▪ Define a parameterized multibitAND
41

parameter N = 8; // bus width
parameter period = 100; // timing constant

EE/CSE371, Spring 2024L01: SystemVerilog Review & Tips

Lab 1 Notes

❖ Read the spec carefully!

▪ For scenarios that are not described,
it’s up for you to define; describe and
defend your decisions in your report

▪ Also read 371_Assignments.pdf

❖ Plan and design before you start
coding!

❖ Test your code in small pieces as you go

▪ Lab report due before your demo

▪ Short sessions (3 min) on LabsLand

42

