
EE/CSE371, Spring 2024L02:  FSM Review

Design of Digital 
Circuits and Systems
Finite State Machine Review

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung



EE/CSE371, Spring 2024L02:  FSM Review

Relevant Course Information

❖ hw1 due on Monday (4/1)

▪ Homework can be completed in groups of up to 4

❖ Lab 1 report due Friday (4/5)

▪ Labs can be completed in groups of up to 2

❖ Lab demos:

▪ Lab demo sign up sheet sent out soon (check with partner)

▪ 15 minutes for demos, early labs will be quicker

▪ Make sure LabsLand is set up and synthesized beforehand

❖ Quiz 1 is Thursday, April 4 in last 25 min of lecture

▪ Draw FSM state diagram & make design decisions
2



EE/CSE371, Spring 2024L02:  FSM Review

Lecture 1 Review

❖ Useful operators:

▪ Ternary operator:  <cond> ? <then> : <else>

▪ Concatenation:  {sig, …, sig}

▪ Replication:  {n{m}}

❖ A parameter is a named constant

❖ A parameterized module:
▪ module <name> #(<parameter list>) (<port list>);

▪ Parameters can be given default values
• e.g., #(parameter N = 8)

3

parameter N = 8;        // bus width
parameter period = 100;  // timing constant



EE/CSE371, Spring 2024L02:  FSM Review

Review Question

❖ There are two forms of bit extensions:  zero-extension 
(add 0s) and sign-extension (copy MSB)

❖ Write out SystemVerilog pseudocode for a 
parameterized extender module

▪ Inputs sign (1 bit), in (𝑀 bits); output out (𝑁 bits > 𝑀)

▪ out should either be the sign-extended version of in
(sign = 1) or the zero-extended version of in (sign = 0)

4



EE/CSE371, Spring 2024L02:  FSM Review

Lecture Outline

❖ SystemVerilog Review & Tips (Cont.)

❖ FSMs

❖ Testbenches

6



EE/CSE371, Spring 2024L02:  FSM Review

Structural vs. Behavioral Revisited

❖ Not a strict definition of these terms, so exact 
classification is not that important

❖ Structural:

▪ Instantiating modules (library and user-defined) and 
defining port connections

▪ assign:  continuous assignment
• Used with nets

7



EE/CSE371, Spring 2024L02:  FSM Review

Verilog Procedural Blocks

❖ A procedural block is made up of behavioral code in 
the form of procedural statements whose effects are 
interpreted sequentially

▪ The block itself is awakened/triggered in a non-sequential 
manner

❖ initial:  block triggered once at time zero

▪ Non-synthesizable (i.e., for simulation/testbenches only)

❖ always:  block triggered by a sensitivity list

▪ Any object that is assigned a value in an always statement 
must be declared as a variable (e.g., logic or reg).

8



EE/CSE371, Spring 2024L02:  FSM Review

SystemVerilog Procedural Blocks

❖ SystemVerilog introduced variants on always that are 
generally more robust and more specialized

❖ always_comb:  intended for combinational logic

▪ Sensitivity list is automatically built

❖ always_latch:  intended for latch-based logic

▪ Sensitivity list is automatically built

❖ always_ff:  intended for sequential logic 
(i.e., synchronous/clocked)

▪ Sensitivity list must be specified

9



EE/CSE371, Spring 2024L02:  FSM Review

Latch vs. Flip-Flop

❖ Both are bistable multivibrators (2 stable states) that 
can store information

❖ A latch is asynchronous; a flip-flop is edge-triggered

10

module my_latch(input  logic clk,
input  logic [3:0] d,
output logic [3:0] q);

always_latch
if (clk) q <= d;

endmodule

module my_ff(input  logic clk,
input  logic [3:0] d,
output logic [3:0] q);

always_ff @(posedge clk)
q <= d;

endmodule



EE/CSE371, Spring 2024L02:  FSM Review

Inferred Latches

❖ Warning: easy to write code with inadvertent latches

▪ Check your synthesis output for “Inferred latch”

▪ Usually from incomplete assignments – unspecified branch 
infers latch behavior

❖ Question: which of the following will synthesize and, 
if so, what will the hardware look like?

▪ Demo:  Tools → “Netlist Viewers” → “RTL Viewer”
11

always_latch
if (clk) q <= d;

always_comb
if (clk) q = d;

always_latch
if (clk) q <= d;
else q <= ~d;

always_comb
if (clk) q = d;
else q = ~d;



EE/CSE371, Spring 2024L02:  FSM Review

case Statement

❖ Create combinational 
logic and is easier to read 
than lots of if/else
statements

▪ Must always be inside an 
always block

▪ Each case has an implied 
C-style break

12

module seven_seg(bcd, segs);

input logic [3:0] bcd;
output logic [6:0] segs;

always_comb
case (bcd)

//           abc_defg
0: segs = 7'b011_1111;
1: segs = 7'b000_0110;
2: segs = 7'b101_1011;
3: segs = 7'b100_1111;
4: segs = 7'b110_0110;
5: segs = 7'b110_1101;
6: segs = 7'b111_1101;
7: segs = 7'b000_0111;
8: segs = 7'b111_1111;
9: segs = 7'b110_1111;
default:  segs = 7’bX;

endcase

endmodule



EE/CSE371, Spring 2024L02:  FSM Review

case Statement

❖ Create combinational 
logic and is easier to read 
than lots of if/else
statements

▪ Must always be inside an 
always block

▪ Each case has an implied 
C-style break

▪ Remember to use default
to avoid incomplete 
assignments!

13

module seven_seg(bcd, segs);

input logic [3:0] bcd;
output logic [6:0] segs;

always_comb
case (bcd)

//           abc_defg
0: segs = 7'b011_1111;
1: segs = 7'b000_0110;
2: segs = 7'b101_1011;
3: segs = 7'b100_1111;
4: segs = 7'b110_0110;
5: segs = 7'b110_1101;
6: segs = 7'b111_1101;
7: segs = 7'b000_0111;
8: segs = 7'b111_1111;
9: segs = 7'b110_1111;
default:  segs = 7'bX;

endcase

endmodule



EE/CSE371, Spring 2024L02:  FSM Review

Other SystemVerilog Resources

❖ SystemVerilog Language Reference Manual

▪ On website, Verilog → Reference Manual

▪ 586 pages…

❖ SystemVerilog articles

▪ https://www.systemverilog.io/

▪ http://www.verilogpro.com/

▪ https://www.chipverify.com/systemverilog/systemverilog-
tutorial

❖ One style guide for SystemVerilog

▪ https://www.systemverilog.io/styleguide

▪ We won’t enforce, but good guidelines
14

https://www.systemverilog.io/
http://www.verilogpro.com/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.systemverilog.io/styleguide


EE/CSE371, Spring 2024L02:  FSM Review

Technology

Break
15



EE/CSE371, Spring 2024L02:  FSM Review

Lecture Outline

❖ SystemVerilog Review & Tips (Cont.)

❖ Finite State Machine Design

❖ Testbenches

16



EE/CSE371, Spring 2024L02:  FSM Review

Finite State Machines (FSMs)

❖ A convenient way to conceptualize computation over 
time using a state transition diagram

▪ Consists of a set of states, an initial state, and a transition 
function

❖ FSM implementations 
come in 3 blocks:

▪ State register (SL)

▪ Next state logic (CL)

▪ Output logic (CL)

17

. . .



EE/CSE371, Spring 2024L02:  FSM Review

FSM Implementation Notes

❖ States must be assigned a binary encoding

▪ More readable by using parameters or an enum

▪ Encoding choices can affect logic simplification

❖ Reset signal can be synchronous (responds to clk) or 
asynchronous (responds to reset)

▪ Determined by whether or not reset is in sensitivity list

❖ State logic (next state logic + state update) can be 
written as 1 combined block or 2 separate blocks

❖ If input is asynchronous, may want to add a two-flip-
flop synchronizer to deal with metastability

18



EE/CSE371, Spring 2024L02:  FSM Review

FSM SystemVerilog Design Pattern

❖ Which, if any, construct(s) would you expect to use 
for each of the following basic sections of a module 
that implements an FSM?

▪ // define states and state variables
initial assign always_comb always_ff None

▪ // next state logic (ns)
initial assign always_comb always_ff None

▪ // output logic
initial assign always_comb always_ff None

▪ // state update logic (ps)
initial assign always_comb always_ff None

19



EE/CSE371, Spring 2024L02:  FSM Review

FSM Example: String Manipulator

❖ Takes in a stream of inputs and removes the second 1 
from every consecutive string of 1’s.

▪ Example inputs:   0   1   0   1   1   0   1   1   1   0   1   1   1   1   …
outputs:

20

00 01

1/1

0/0

1/1

0/0

0/0

Reset 11

1/0



EE/CSE371, Spring 2024L02:  FSM Review

String Manipulator FSM

21

module fsm (input  logic clk, reset, in,
output logic out);

// present and next state
enum logic [1:0] {S0, S1, S3} ps, ns;

// next state logic
always_comb

case (ps)
S0: if (in) ns = S1;

else ns = S0;
S1: if (in) ns = S3;

else ns = S0;
S3: if (in) ns = S3;

else ns = S0;
endcase

// output logic
assign out = in & (ps[1] | ~ps[0]);

...

...

// sequential logic (DFFs)
// synchronous reset
always_ff @(posedge clk)

if (reset)
ps <= S0;  // reset state

else
ps <= ns;

endmodule // fsm



EE/CSE371, Spring 2024L02:  FSM Review

Moore vs. Mealy

❖ Moore machines define their outputs based on states 
(         ) and Mealy machines define outputs based on 
transitions (         )

▪ Mealy machines are more flexible
• Moore outputs are function of state; Mealy outputs are function of 

state and inputs

▪ All FSMs can be expressed in either form, but some systems 
are more naturally expressed one way versus the other
• Feel free to use either in this class if not specified

• However, there are implementation differences!

22

0/1

00/1



EE/CSE371, Spring 2024L02:  FSM Review

Mealy ↔Moore Conversions

❖ Moore →Mealy: copy the state output to every 
transition entering the state

❖ Example:  FSM for a turnstile, which is locked until 
someone swipes their Husky ID (input H) and then 
locks once you push through (input P) the unlocked 
gate.  Outputs a light that glows red (0) or green (1).

23

Locked
0/0

Unlocked

1/1

HഥP

ഥHP

ഥP

ഥHP

ഥHഥP

Reset

Not testable 
material



EE/CSE371, Spring 2024L02:  FSM Review

Mealy ↔Moore Conversions

❖ Mealy→Moore:  more complicated process; if 
incoming transitions differ in output, may need to 
“split” the state

❖ Example: the threeOnes FSM from Lecture 1

24

00 01 10

1/0

0/0

1/0

0/0

0/0 1/1

Not testable 
material



EE/CSE371, Spring 2024L02:  FSM Review

Moore vs. Mealy Outputs

❖ Compare a Moore and Mealy FSM for the turnstile. Complete 
the statements and waveform below, assuming no delays:

25

L
0/0

U
1/1

HഥP

ഥHP

ഥP

ഥHP

ഥHഥP

Reset

L
0

U
1

HഥP/1

ഥHP/0

ഥP/1

ഥHP/0

ഥHഥP/0

Reset

Mealy:

Moore: assign out_moore = 
assign out_mealy = 



EE/CSE371, Spring 2024L02:  FSM Review

Moore vs. Mealy Outputs

❖ Moore:

▪ Outputs change synchronously with state changes

❖ Mealy:

▪ Input changes can cause immediate output changes

26



EE/CSE371, Spring 2024L02:  FSM Review

Lecture Outline

❖ SystemVerilog Review & Tips (Cont.)

❖ Finite State Machine Design

❖ Testbenches

27



EE/CSE371, Spring 2024L02:  FSM Review

Testbenches

❖ Special modules needed for simulation only!

▪ Software constraint to mimic hardware

❖ ModelSim runs entirely on your computer

▪ Tries to simulate your FPGA environment without actually 
using hardware – no physical signals available

▪ Must create fake inputs for FPGA’s physical connections
• e.g., LEDR, HEX, KEY, SW, CLOCK_50

▪ Unnecessary when code is loaded onto FPGA

❖ Need to define both input signal combinations as well 
as their timing

28



EE/CSE371, Spring 2024L02:  FSM Review

Testbench Timing Controls

❖ Delay:  #<time>

▪ Delays by a specific amount of simulation time

❖ Edge-sensitive:  @(<pos/neg>edge <signal>)

▪ Delays next statement until specified  transition on signal

❖ Level-sensitive Event:  wait(<expression>)

▪ Waits until <expression> evaluates to TRUE

❖ Stop simulation: $stop;

❖ Timescale:  `timescale <time unit> / <precision>

▪ e.g., `timescale 1 ns / 1 ps

29



EE/CSE371, Spring 2024L02:  FSM Review

Extender Testbench

30

`timescale 1 ns / 1 ns
module extender_tb();

parameter M = 4, N = 8;
logic [M-1:0] in;
logic [N-1:0] out;
logic sign;

extender #(M, N) dut (.*);

int i;
initial begin

for (i = 0; i < 2**2; i++) begin
sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;

end // for
$stop;

end // initial

endmodule // extender_tb



EE/CSE371, Spring 2024L02:  FSM Review

FSM Testbench Notes

❖ Your main goal is to test every transition that we care 
about – may take extra clock cycles

❖ For simulation, you need to generate a clock signal

▪ Assume we have parameter clock_period;

31

Explicit
Edges:

initial
clk = 0;

always_comb begin
#(clock_period/2) clk <= 1;
#(clock_period/2) clk <= 0;

end

Toggle: initial begin
clk <= 0;
forever #(clock_period/2) clk <= ~clk;

end



EE/CSE371, Spring 2024L02:  FSM Review

String Manipulator Testbench

32

module fsm_tb();

logic clk, reset, in, out;

fsm dut (.*);

// simulated clock
parameter period = 100;
initial begin

clk <= 0;
forever

#(period/2)
clk <= ~clk;

end // initial clock

...

...

initial begin
reset <= 1; in <= 0; @(posedge clk); 
reset <= 0; in <= 0; @(posedge clk);

in <= 0; @(posedge clk);
in <= 1; @(posedge clk);
in <= 0; @(posedge clk);
in <= 1; @(posedge clk);
in <= 1; @(posedge clk);
in <= 0; @(posedge clk);
in <= 1; @(posedge clk);
in <= 1; @(posedge clk);
in <= 1; @(posedge clk);

@(posedge clk);
$stop;  // end simulation

end  // initial signals

endmodule // fsm_tb



EE/CSE371, Spring 2024L02:  FSM Review

String Manipulator Waveforms

33

00 01

1/1

0/0

1/1

0/0

0/0

Reset 11

1/0



EE/CSE371, Spring 2024L02:  FSM Review

Checking Responses

❖ Visually checking simulated waveforms quickly 
becomes impractical for large designs simulated over 
thousands of clock cycles

▪ Displaying and explaining your waveforms for labs can be 
tedious

❖ There are simulator-independent system tasks to 
write messages to the user/tester!

▪ Look similar to printf() in C
• $<system_task>(<format_string>, <sig_1>, <sig_2>, …)

▪ Will look at $display today and others later on

34



EE/CSE371, Spring 2024L02:  FSM Review

Checking Responses: $display

❖ Triggers once when encountered, prints the given 
format string and adds a new line:

35

// define test inputs
int i;

initial begin

for (i = 0; i < 2**2; i++) begin

sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;

$display("t = %0t, %b %s %b",

$time, in, sign ? "-+->" : "-0->", out);

end // for

$stop;

end // initial



EE/CSE371, Spring 2024L02:  FSM Review

Format Specifiers

▪ Warning: these differ from the specifiers for printf

▪ The minimum field width is specified by numbers between 
the ‘%’ and specifier letter
• e.g., %3d will pad out to 3 digits if necessary, 

e.g., %0d will show just the minimum number of digits needed
36


