
EE/CSE371, Spring 2024L04: Memory II

Design of Digital
Circuits and Systems
Memory II

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L04: Memory II

Relevant Course Information

❖ Lab 1 report due tomorrow (4/5)

❖ Lab 1 demo due by end of 4/12

▪ See Lab Demo Slot assignment on Canvas

❖ Lab 2 report due next Friday (4/12)

❖ Homework 2 due next Wednesday (4/10)

❖ Use Ed Discussion to ask course questions

▪ If sensitive, can email from a UW-associated email account

▪ Do NOT use Canvas messages

2

EE/CSE371, Spring 2024L04: Memory II

Lab 2 Notes

❖ Implementing a few RAM variants on the DE1-SoC

▪ Using both a library catalog and user-specified RAM modules

❖ Learn how to create and use a memory initialization
file (.mif) to initialize memory on your board

❖ Feel free to reuse other modules (e.g., input, clock
divider, 7-seg, counter) from 271/369

▪ Simple modules don’t need diagrams or simulations, but
they should be shown in the block diagram and mentioned
in your report

3

EE/CSE371, Spring 2024L04: Memory II

Synchronous Single-Port RAM (Review)

❖ Synchronous Inputs:

▪ wren (1 = write, 0 = read)

▪ addr (𝐴-bit address)

▪ din (𝐷-bit data)

❖ Synchronous Output:

▪ dout (𝐷-bit data)

❖ Implementation hints:

▪ Will need an internal RAM array of what size?

▪ To synchronize, should update on clock triggers

▪ What should dout do when wren = 1?

4

CLK

din

Single-Port

RAM

wren

𝐴 𝐷
doutaddr

𝐷

EE/CSE371, Spring 2024L04: Memory II

Synchronous Single-Port RAM (Review)

module RAM_single #(parameter A, D)
(clk, wren, addr, din, dout);

input logic clk, wren;
input logic [A-1:0] addr;
input logic [D-1:0] din;
output logic [D-1:0] dout;

logic [D-1:0] RAM [0:2**A-1];

always_ff @(posedge clk) begin
if (wren) begin

RAM[addr] <= din;
dout <= din;

end
else

dout <= RAM[addr];
end // always_ff

endmodule

5

EE/CSE371, Spring 2024L04: Memory II

Simplified Synchronous Dual-Port RAM

❖ 2 ports with 1 dedicated to writing and the other
dedicated to reading

❖ Synchronous Inputs:

▪ wren (1 = write, 0 = read)

▪ addr_w (𝐴-bit address)

▪ addr_r (𝐴-bit address)

▪ din_w (𝐷-bit data)

❖ Synchronous Output:

▪ dout_r (𝐷-bit data)

❖ Differences in SystemVerilog?

6

CLK

addr_r

Simplified

Dual-Port

RAM

wren

𝐴 𝐷
dout_raddr_w

𝐴
din_w

𝐷

EE/CSE371, Spring 2024L04: Memory II

Simplified Synchronous Dual-Port RAM (SV)

module RAM_dual_simple #(parameter A, D)
(clk, wren, addr_w, addr_r, din_w, dout_r);

input logic clk, wren;
input logic [A-1:0] addr_w, addr_r;
input logic [D-1:0] din_w;
output logic [D-1:0] dout_r;

logic [D-1:0] RAM [0:2**A-1];

always_ff @(posedge clk) begin
if (wren) begin

RAM[addr_w] <= din_w;
dout_r <= (addr_r == addr_w) ? din_w : RAM[addr_r];

end
else

dout_r <= RAM[addr_r];
end // always_ff

endmodule

7

EE/CSE371, Spring 2024L04: Memory II

Synchronous Dual-Port RAM

❖ The most general configuration – each port can either
read or write

❖ Synchronous Inputs:

▪ wren_a and wren_b

▪ addr_a and addr_b

▪ din_a and din_b

❖ Synchronous Output:

▪ dout_a and dout_b

❖ Differences in SystemVerilog?

8

din_a Dual-Port

RAM

wren_a

𝐴 𝐷
dout_aaddr_a

CLK

𝐷
wren_b

𝐷

dout_baddr_b
din_b

𝐴 𝐷

EE/CSE371, Spring 2024L04: Memory II

Memory

❖ Several forms of memory are available, which include:

▪ Secondary memory (e.g., hard disk, flash drive)

▪ Read-only memory (ROM)

▪ Random-access memory (RAM)

▪ Register files
• Small, fast, fixed-sized memory that hold CPU data state

▪ First in, first out (FIFO) buffers

9

EE/CSE371, Spring 2024L04: Memory II

Memory Type #3: Register File

❖ Register File – a collection of registers

▪ 1 input data port – can only write to 1 register at a time

▪ 1+ output data ports – can read from 1+ register at a time

▪ Address inputs to specify read/write targets

▪ Write enable

❖ Frequently used in CPUs or as fast buffers

❖ Example:

10

CLK

busW

Write Enable

64
64

busA

64
busB

4 4 4
RW RA RB

16 x 64-bit
Registers

EE/CSE371, Spring 2024L04: Memory II

Simple Register File (4 reg, 1 read port)

11

w_data

4 × 8-bit
Regfile

w_en
8

8
r_data

w_addr

r_addr

CLK

2

2

EE/CSE371, Spring 2024L04: Memory II

Memory Review

❖ Can think of reg file as a
2-D array of D flip-flops:

❖ The simple reg file was labeled 4 × 8

▪ SystemVerilog array declaration:

❖ For a generic reg file with parameters D_WIDTH and
A_WIDTH:

▪ Depth:

▪ Width:

▪ SystemVerilog array declaration:

12

EE/CSE371, Spring 2024L04: Memory II

Register File with 1 Read Port (SV)

module reg_file #(parameter D_WIDTH=8, A_WIDTH=2)
(clk, w_data, w_en, w_addr, r_addr, r_data);

input logic clk, w_en;
input logic [A_WIDTH-1:0] w_addr, r_addr;
input logic [D_WIDTH-1:0] w_data;
output logic [D_WIDTH-1:0] r_data;

// array declaration (registers)
logic [D_WIDTH-1:0] array_reg [0:2**A_WIDTH-1];

// write operation (synchronous)
always_ff @(posedge clk)

if (w_en)
array_reg[w_addr] <= w_data;

// read operation (asynchronous)
assign r_data = array_reg[r_addr];

endmodule

13

EE/CSE371, Spring 2024L04: Memory II

Where’s the Hardware?

14

module reg_file #(parameter D_WIDTH=8, A_WIDTH=2)
(clk, w_data, w_en, w_addr, r_addr, r_data);

input logic clk, w_en;
input logic [A_WIDTH-1:0] w_addr, r_addr;
input logic [D_WIDTH-1:0] w_data;
output logic [D_WIDTH-1:0] r_data;

// array declaration (registers)
logic [D_WIDTH-1:0] array_reg [0:2**A_WIDTH-1];

// write operation (synchronous)
always_ff @(posedge clk)

if (w_en)
array_reg[w_addr] <= w_data;

// read operation (asynchronous)
assign r_data = array_reg[r_addr];

endmodule

EE/CSE371, Spring 2024L04: Memory II

Register File with 2 Read Ports

❖ What would change in hardware?

❖ What would change in SystemVerilog?

15

w_data

4 × 8-bit
Regfile

w_en
8

8
r_data0

w_addr

r_addr0

CLK

2

2

2
r_addr1

r_data1
8

EE/CSE371, Spring 2024L04: Memory II

Register File with Synchronous Read

❖ Back to the 1 read port version, but now we want to
make reading synchronous:

▪ What would change in SystemVerilog?

▪ What would change in hardware?

16

EE/CSE371, Spring 2024L04: Memory II

Short Tech

Break
17

EE/CSE371, Spring 2024L04: Memory II

Memory Type #4: FIFO Buffer

❖ First-In First-Out (FIFO) Buffer

▪ Data storage such that elements that arrived earlier are
accessed before elements that arrived later

▪ Has a limited capacity, so there is a notion of fullness

▪ Useful for synchronization, especially in communication
(e.g., UART, disk, network)

18

EE/CSE371, Spring 2024L04: Memory II

FIFO Buffer Functionality

❖ Implementation we will work towards:

▪ rd signals to read the next element on r_data,
wr signals to write w_data into the buffer

▪ Outgoing data is read from the front/head of the buffer and
incoming data is written to the back/tail of the buffer

▪ Can be implemented by wrapping a regular memory
component with a special controller
• However, the FIFO buffer has no visible notion of address!

19

FIFO Buffer

rd

𝐷
r_data

wr

w_data

CLK
𝐷

empty

full

EE/CSE371, Spring 2024L04: Memory II

FIFO Read Configurations

❖ First Word Fall Through (FWFT)

▪ Asynchronous read: front element of buffer always “falls
through” and is immediately available on the output bus
• Including when an element is written to an empty buffer!

▪ rd therefore acts more like a “remove” signal

❖ Standard

▪ Synchronous read: front element of buffer becomes
available on next clock cycle after rd is asserted

▪ rd therefore acts more like a “request” signal

20

EE/CSE371, Spring 2024L04: Memory II

FIFO Read Configurations

❖ Read configuration comparison

▪ FWFT can be converted to standard by registering the
output:

21

EE/CSE371, Spring 2024L04: Memory II

FIFO Implementation

❖ A FIFO buffer is often implemented as a circular
queue with two pointers:

▪ rd_ptr indicates the location of the
front/head (i.e., the first valid data)
and advances when rd is asserted

▪ wr_ptr indicates the location of the
back/tail (i.e., the first empty element)
and advances when wr is asserted

▪ empty and full as buffer fullness status indicators
• These are tricky because both situations have rd_ptr == wr_ptr

22

EE/CSE371, Spring 2024L04: Memory II

Circular Queue Example Operation

23

EE/CSE371, Spring 2024L04: Memory II

Circular Queue Implementation

❖ A circular queue can be implemented using a RAM
module and a FIFO controller

▪ The controller handles the “arrangement” of the linear
memory space into a circular queue

24

EE/CSE371, Spring 2024L04: Memory II

FIFO Controller

❖ FIFO controller internals:

▪ rd_ptr and wr_ptr are counters

▪ empty and full are flip-flops

▪ Next state logic based on inputs rd and wr:

25

rd wr rd_ptr wr_ptr empty full

0 0

0 1

1 0

1 1

EE/CSE371, Spring 2024L04: Memory II

FIFO Controller

❖ FIFO controller internals:

▪ rd_ptr and wr_ptr are counters

▪ empty and full are flip-flops

▪ Next state logic based on inputs rd and wr:
rw

• 00→ no change

• 11→ advance both rd_ptr and wr_ptr
full and empty don’t change

• 10→ if not empty: advance rd_ptr,
set full = 0,
set empty = 1 if rd_ptr == wr_ptr

• 01→ if not full: advance wr_ptr,
set empty = 0,
set full = 1 if rd_ptr == wr_ptr

26

EE/CSE371, Spring 2024L04: Memory II

FIFO Controller (SV, 1/3)

module fifo_ctrl #(parameter A_WIDTH=4)
(clk, reset, rd, wr, empty, full, w_addr, r_addr);

input logic clk, reset, rd, wr;
output logic empty, full;
output logic [A_WIDTH-1:0] w_addr, r_addr;

// next state signal declarations
logic [A_WIDTH-1:0] rd_ptr, rd_ptr_next;
logic [A_WIDTH-1:0] wr_ptr, wr_ptr_next;
logic empty_next, full_next;

// output assignments
assign w_addr = wr_ptr;
assign r_addr = rd_ptr;

// [continued on next slide...]

27

EE/CSE371, Spring 2024L04: Memory II

FIFO Controller (SV, 2/3)

// fifo controller logic
always_ff @(posedge clk) begin

if (reset)
begin

wr_ptr <= 0;
rd_ptr <= 0;
full <= 0;
empty <= 1;

end
else

begin
wr_ptr <= wr_ptr_next;
rd_ptr <= rd_ptr_next;
full <= full_next;
empty <= empty_next;

end

// [continued on next slide...]

28

EE/CSE371, Spring 2024L04: Memory II

FIFO Controller (SV, 3/3)

29

case ({rd, wr})
2'b11: // read and write

begin
rd_ptr_next = rd_ptr + 1'b1;
wr_ptr_next = wr_ptr + 1'b1;

end
2'b10: // read

if (~empty) begin
rd_ptr_next = rd_ptr + 1'b1;
if (rd_ptr_next == wr_ptr)

empty_next = 1;
full_next = 0;

end
2'b01: // write

if (~full) begin
wr_ptr_next = wr_ptr + 1'b1;
empty_next = 0;
if (wr_ptr_next == rd_ptr)

full_next = 1;
end

2'b00: ; // no change
endcase

end // always_comb

endmodule

// next state logic
always_comb begin

// default: keep current values
rd_ptr_next = rd_ptr;
wr_ptr_next = wr_ptr;
empty_next = empty;
full_next = full;

// [continued in next box...]

EE/CSE371, Spring 2024L04: Memory II

FIFO Buffer (SV)

module fifo #(parameter D_WIDTH=8, A_WIDTH=4)
(clk, reset, rd, wr, empty, full, w_data, r_data);

input logic clk, reset, rd, wr;
output logic empty, full;
input logic [D_WIDTH-1:0] w_data;
output logic [D_WIDTH-1:0] r_data;

// signal declarations
logic [A_WIDTH-1:0] w_addr, r_addr;
logic w_en;

// enable write only when FIFO is not full
assign w_en = wr & (~full | rd);

// instantiate FIFO controller and register file
fifo_ctrl #(A_WIDTH) control (.*);
reg_file #(D_WIDTH, A_WIDTH) mem (.*);

endmodule

30

EE/CSE371, Spring 2024L04: Memory II

Memory Controllers

❖ A memory controller is an interface circuit between
user logic and the physical memory device

▪ Abstracts away details of physical memory device while
providing a consistent interface to the user

▪ The FIFO controller we just discussed allows a user to
interface with the register file we implemented on the
FPGA’s internal memory module

❖ Memory controllers are found with all kinds of
memory

▪ Your DE1-SoC contains memory controllers for SDRAM and
DDR3 (and controllers for a bunch of other things like USB,
VGA, PS/2, I2C)

31

EE/CSE371, Spring 2024L04: Memory II

DE1-SoC Memory Revisited

32

EE/CSE371, Spring 2024L04: Memory II

SDRAM Controller

❖ High-performance controllers are very complex!

▪ Design depends on individual FPGA and SDRAM devices

▪ Usually constructed with vendor-supplied IP core

33

