
EE/CSE371, Spring 2024L06: ASMD I

Design of Digital
Circuits and Systems
ASM with Datapath I

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L06: ASMD I

Relevant Course Information

❖ Homework 2 late deadline tonight (4/11)

❖ Homework 3 due next Friday (4/19)

▪ FIFO buffers & ASM charts

❖ Lab 2 reports due Friday (4/12), demos 4/15-19

▪ Same lab demo slots for whole quarter

❖ Lab 3 due 4/26

▪ Lab 3 + 4 are really ~1.5 weeks long, so don’t wait!

❖ Quiz 2 next Thursday (4/18)

▪ Memory (ROM, RAM, reg files)

2

EE/CSE371, Spring 2024L06: ASMD I

Review: ASM Chart

3

1 state box +

all decision and

conditional boxes

connected to

its exit path

(d) ASM block

EE/CSE371, Spring 2024L06: ASMD I

Review Question: 3-way Switch

❖ Create an ASM chart for a 3-way switch
system using Mealy-type output

▪ LTog and RTog pulse 1 when switch is
flipped/toggled, output called light

4

RightLeft

EE/CSE371, Spring 2024L06: ASMD I

ASMD Charts

❖ An Algorithmic State Machine with a Datapath chart
is created by adding RTL operations to an ASM chart

▪ Timing of operations can be confusing – NOT a flowchart

❖ School of Thought #1:

▪ RTL operations are triggered
by control signals, so they
can appear anywhere an
output signal can:

5

EE/CSE371, Spring 2024L06: ASMD I

ASMD Charts

❖ An Algorithmic State Machine with a Datapath chart
is created by adding RTL operations to an ASM chart

▪ Timing of operations can be confusing – NOT a flowchart

❖ School of Thought #2:

▪ It’s clearer to separate
control signals (Control) from
RTL operations (Datapath)

❖ There isn’t a set standard

▪ You may see both or variants

▪ We use School of Thought #2
6

EE/CSE371, Spring 2024L06: ASMD I

ASMD Hardware

❖ State transitions and RTL operations are both
controlled by the clock

▪ It’s often helpful to remember the underlying hardware –
registers!

7

EE/CSE371, Spring 2024L06: ASMD I

ASMD Hardware

❖ State transitions and RTL operations are both
controlled by the clock

▪ It’s often helpful to remember the underlying hardware –
registers!

❖ The behavior of both state and data registers depend
on the current control state

▪ Can conceptually think of as a MUX to the registers’ inputs
that uses the current state as its selector bits

8

EE/CSE371, Spring 2024L06: ASMD I

Hardware Example #1

❖ State transitions and RTL operations are both
controlled by the clock

▪ It’s often helpful to remember the underlying hardware –
registers!

9

r1← 8

r1← r1 + r2

r1← r1 << 2

s0 00

s1 01

s2 10

s3 11

EE/CSE371, Spring 2024L06: ASMD I

Hardware Example #2

❖ State transitions and RTL operations are both
controlled by the clock

▪ It’s often helpful to remember the underlying hardware –
registers!

11

EE/CSE371, Spring 2024L06: ASMD I

ASMD Timing

❖ Everything (registers!) within an ASM block occurs
simultaneously at the next clock trigger

▪ Differs from a flowchart – changes occur at state exit rather
than entrance

12

EE/CSE371, Spring 2024L06: ASMD I

ASMD Timing

❖ Everything (registers!) within an ASM block occurs
simultaneously at the next clock trigger

▪ Differs from a flowchart – changes occur at state exit rather
than entrance

13

clk

state idle s0 s1

a 2

b 3

r1 34

r2 85

enter s0 exit s0

EE/CSE371, Spring 2024L06: ASMD I

ASMD Timing Question

❖ What value will be stored in 𝑟 when we transition
from state 𝑠1 to the next state? -1, 0, 1

14

𝑟 = 0

𝑟 ← 𝑟 − 1

1

𝑠1

EE/CSE371, Spring 2024L06: ASMD I

Short Tech

Break
16

EE/CSE371, Spring 2024L06: ASMD I

ASMD Design Procedure

❖ From problem description or algorithm pseudocode:

1) Identify necessary datapath components and operations

2) Identify states and signals that cause state transitions
(external inputs and status signals), based on the necessary
sequencing of operations

3) Name the control signals that are generated by the
controller that cause the indicated operations in the
datapath unit

4) Form an ASM chart for your controller, using states,
decision boxes, and signals determined above

5) Add the datapath RTL operations associated with each
control signal

17

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1

❖ System specification:

▪ Flip-flops 𝐸 and 𝐹

▪ 4-bit binary up-counter 𝐴 = 0b𝐴3𝐴2𝐴1𝐴0
▪ Active-low reset signal 𝑟𝑒𝑠𝑒𝑡_𝑏 puts us in state 𝑆_𝑖𝑑𝑙𝑒,

where we remain while signal 𝑆𝑡𝑎𝑟𝑡 = 0

▪ 𝑆𝑡𝑎𝑟𝑡 = 1 initiates the system’s operation by clearing 𝐴 and
𝐹. At each subsequent clock pulse, the counter is
incremented by 1 until the operations stop.

▪ Bits 𝐴2 and 𝐴3 determine the sequence of operations:
• If 𝐴2 = 0, set 𝐸 to 0 and the count continues

• If 𝐴2 = 1, set 𝐸 to 1; additionally, if 𝐴3 = 0, the count continues,
otherwise, wait one clock pulse to set 𝐹 to 1 and stop counting (i.e.,
back to 𝑆_𝑖𝑑𝑙𝑒)

18

Status

indicators

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1

❖ The system can be represented by the following block
diagram:

19

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (ASM → ASMD Chart)

❖ Synchronous or asynchronous reset?

20

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (Timing)

❖ Sequence of operations:

21

Counter Flip-Flops

A3 A2 A1 A0 E F Conditions State

X X X X 1 X Start S_idle

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

A2 = 0, A3 = 0 S_count

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

A2 = 1, A3 = 0

1

1

1

1

0

0

0

0

0

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

A2 = 0, A3 = 1

1 1 0 0 0 0 A2 = 1, A3 = 1

1 1 0 1 1 0 S_F

1 1 0 1 1 1 S_idle

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (Logic)

❖ Controller:

▪ State Table:

▪ Logic:

22

𝑁1 = 𝑠𝑒𝑡_𝐹 =

𝑁0 = 𝑐𝑙𝑟_𝐴_𝐹 =

𝑠𝑒𝑡_𝐸 = 𝑖𝑛𝑐𝑟_𝐴 =

𝑐𝑙𝑟_𝐸 =

Present

State Inputs

Next

State Outputs

Present-State

Symbol P1 P0 Start A2 A3 N1 N0 s
e

t_
E

c
lr

_
E

s
e

t_
F

c
lr

_
A

_
F

in
c

r_
A

S_idle

S_idle

S_count

S_count

S_count

S_F

0

0

0

0

0

1

0

0

1

1

1

1

0

1

X

X

X

X

X

X

0

1

1

X

X

X

X

0

1

X

0

0

0

0

1

0

0

1

1

1

1

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

0

EE/CSE371, Spring 2024L06: ASMD I

Short Tech
Break

23

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (SV, Controller)

24

module controller (set_E, clr_E, set_F, clr_A_F,
incr_A, A2, A3, Start, clk,
reset_b);

// port definitions
input logic Start, clk, reset_b, A2, A3;
output logic set_E, clr_E, set_F, clr_A_F, incr_A;

// define state names and variables
enum {S_idle, S_1, S_2} ps, ns;

// controller logic w/synchronous reset
always_ff @(posedge clock)

if (~reset_b)
ps <= S_idle;

else
ps <= ns;

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (SV, Controller)

26

// next state logic
always_comb

case (ps)
S_idle: ns = Start ? S_1 : S_idle;
S_1:ns = (A2 & A3) ? S_2 : S_1;
S_2:ns = S_idle;

endcase

// output assignments
assign set_E = (ps == S_1) & A2;
assign clr_E = (ps == S_1) & ~A2;
assign set_F = (ps == S_2);
assign clr_A_F = (ps == S_idle) & Start;
assign incr_A = (ps == S_1);

endmodule // controller

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (SV, Datapath)

28

module datapath (A, E, F, clk, set_E, clr_E, set_F, clr_A_F,
incr_A);

// port definitions
output logic [3:0] A;
output logic E, F;
input logic clk, set_E, clr_E, set_F, clr_A_F, incr_A;

// datapath logic
always_ff @(posedge clk) begin

if (clr_E) E <= 0;
else if (set_E) E <= 1;
if (clr_A_F)

begin
A <= 4'b0;
F <= 0;

end
else if (set_F) F <= 1;
if (incr_A) A <= A + 4'h1;

end

endmodule // datapath

EE/CSE371, Spring 2024L06: ASMD I

Design Example #1 (SV, Top-Level Design)

30

module top_level (A, E, F, clk, Start, reset_b);

// port definitions
output logic [3:0] A;
output logic E, F;
input logic clk, Start, reset_b;

// internal signals
logic set_E, clr_E, set_F, clr_A_F, incr_A;

// instantiate controller and datapath
controller c_unit (.set_E, .clr_E, .set_F,

.clr_A_F, .incr_A, .A2(A[2]),

.A3(A[3]), .Start, .clk,

.reset_b);
datapath d_unit (.*);

endmodule // top_level

