Design of Digital Circuits and Systems ASM with Datapath II

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Gayathri Vadhyan Lancelot Wathieu

Deepti Anoop Jared Yoder Matthew Hung

Relevant Course Information

- Homework 3 due Friday (4/19)
- Homework 4 released Thursday
- Quiz 2 (ROM, RAM, Reg files) this Thu at 11:50 am
 - Based heavily on Homework 2
 - Memory sizing, addressing, initialization, and implementation (*i.e.*, circuit diagram)
- Lab 3 reports due next Friday (4/26)
 - Ideally finish by early next week so you can start Lab 4, which will be released this Thursday

ASMD Design Procedure

- From problem description or algorithm pseudocode:
 - **1)** Identify necessary datapath components and operations
 - 2) Identify states and signals that cause state transitions (external inputs and status signals), based on the necessary sequencing of operations
 - 3) Name the control signals that are generated by the controller that cause the indicated operations in the datapath unit
 - 4) Form an ASM chart for your controller, using states, decision boxes, and signals determined above
 - 5) Add the datapath RTL operations associated with each control signal

data

Datapath

unit

Output

data

Control

Status signals

Input signals (external)

Control unit

(FSM)

Design Example

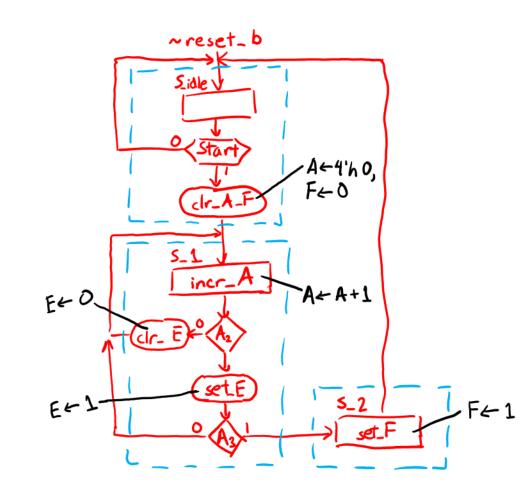
- System specification:
- $dctapath = Flip-flops \underline{E}$ and \underline{F}
- determine 4-bit binary counter $\underline{A} = 0bA_3A_2A_1A_0$

- Active-low reset signal <u>reset_b</u> puts us in state <u>S_idle</u>, where we remain while signal <u>Start</u> = 0
- Start = 1 initiates the system's operation by clearing A and

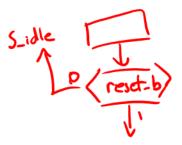
control signals

status

signals


signals

- <u>*F*</u>. At each subsequent clock pulse, the counter is $c_{clr} A_F$ incremented by 1 until the operations stop.
- Bits $\underline{A_2}$ and $\underline{A_3}$ determine the sequence of operations:
 - If $A_2 = 0$, set *E* to 0 and the count continues


• If $A_2 = 1$, set *E* to 1; additionally, if $A_3 = 0$, the count continues, otherwise, wait one clock pulse to set F to 1 and stop counting (*i.e.*, back to S_idle) Lort-F

Design Example #1 (ASMD Chart)

Synchronous or <u>asynchronous</u> reset?

for sychronous reset, add decision box on reset-b out of every state box:

Design Example #1 (SV, Controller) control signals (art) status signals (in) external inputs (in) module controller (set_E, clr_E, set_F, clr_A_F, incr A, A2, A3, Start, clk, reset b): // port definitions input logic Start, clk, reset b, A2, A3; output logic set E, clr E, set F, clr A F, incr A; // define state names and variables enum {S idle, S 1, S 2 = 3} ps, ns; // next state logic always comb // controller logic w/synchronous r case (ps) always ff @(posedge clk) S idle: ns = Start ? S 1 : S idle; if (~reset b) S 1: ns = (A2 & A3) ? S 2 : S 1;ps <= S idle;</pre> S 2: ns = S idle; else endcase ps <= ns;// output assignments assign set_E = (ps == S_1) & A2; assign clr_E = (ps == S_1) & ~A2; assign set_F = (ps == S_2); assign clr_A_F = (ps == S_idle) & Start; assign incr A = (ps == S 1); endmodule // controller

control signals (in)

status signals (aut)

external inputs (in) external outputs (out)

Design Example #1 (SV, Datapath)

```
module datapath (A, E, F, clk, set_E, clr_E, set_F, clr_A_F,
                incr A);
  // port definitions
   output logic [3:0] A;
   output logic E, F;
   input logic clk, set_E, clr_E, set_F, clr_A_F, incr_A;
   // datapath logic
   always_ff @(posedge clk) begin
      if (clr E) E <= 1'b0;
      else if (set E) E <= 1'b1;</pre>
      if (clr_A_F)
         begin
            A <= 4'b0;
            F <= 1'b0;
         end
      else if (set F) F <= 1'b1;</pre>
      else if (incr_A) A <= A + 4'h1;</pre>
   end // always ff
endmodule // datapath
```

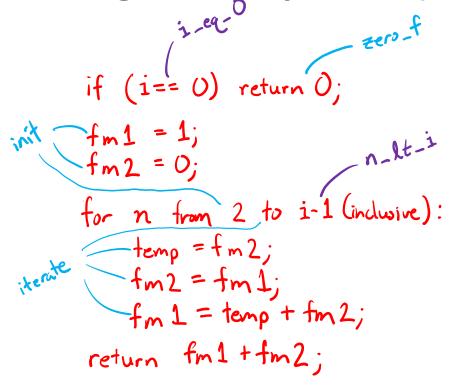
Design Example #1 (SV, Top-Level Design)

```
module top level (A, E, F, clk, Start, reset b);
   // port definitions
   output logic [3:0] A;
   output logic E, F;
   input logic clk, Start, reset b;
   // internal signals (control signals and status signals that oren't outputs)
   logic set E, clr E, set F, clr A F, incr A;
   // instantiate controller and datapath
   controller c unit (.set E, .clr E, .set F,
                       .clr_A_F, .incr_A, .A2(A[2]),
                       .A3(A[3]), .Start, .clk,
                       .reset b);
   datapath d_unit (.*);
endmodule // top_level
```

Design Example #2: Fibonacci

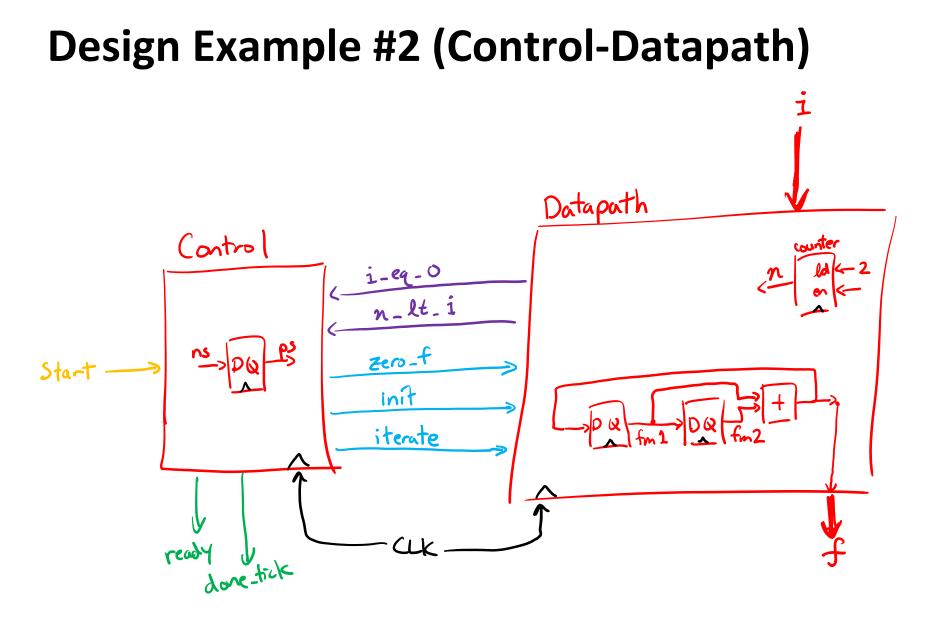
 Design a sequential Fibonacci number circuit with the following properties: ready start +done tick

fib

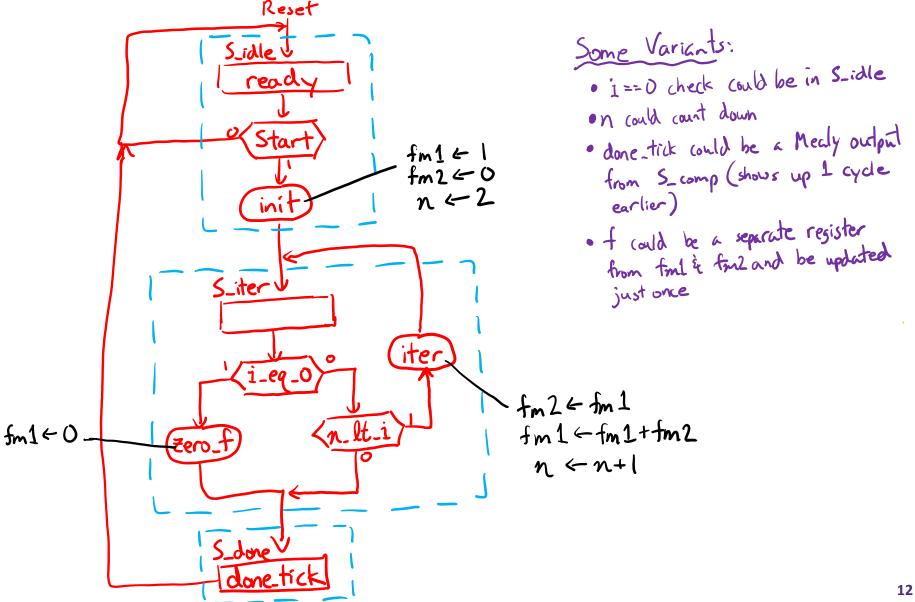

clk

- i is the desired sequence number
- f is the computed Fibonacci number:

$$fib(i) = \begin{cases} 0, & i = 0\\ 1, & i = 1\\ fib(i-1) + fib(i-2), & i > 1 \end{cases}$$


- ready means the circuit is idle and ready for new input
- start signals the beginning of a new computation
- done tick is asserted for 1 cycle when the computation is complete

Design Example #2 (Pseudocode)



Some Variants: • could have explicitly shown i==1 base case • any loop bounds that execute i-2 times will work • could have explicitly used a third f = fm1 tfm2 variable

- Pseudocode analysis:
 - Variables are part of datapath; assignments become RTL operations
 - Chunks of related actions should be triggered by control signals
 - Decision points become status signals

Design Example #2 (ASMD Chart)

Design Example #2 (SV)

```
fib control:
  // port definitions
  // define state names and variables
  // controller logic w/synchronous reset
  // next state logic
  // output assignments
fib datapath:
  // port definitions
  // datapath logic
fib:
  // port definitions
  // define status and control signals
  // instantiate control and datapath
```

Other Hardware Algorithms

- Sequential binary multiplier or divider
- Arithmetic mean
- Lab 4: Bit counting
- Lab 4: Binary search
- Lab 5: Bresenham's line

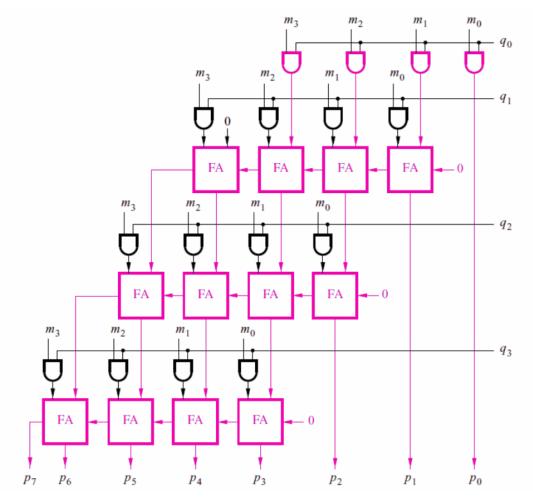
Technology

Break

Hardware Acceleration

- ASMD as a design process can be used to implement software algorithms
- Custom hardware can accelerate operation:
 - Hardware can better exploit parallelism
 - Hardware can implement more specialized operations
 - Hardware can reduce "processor overhead" (*e.g.*, instruction fetch, decoding)
- "Hardware accelerators" are frequently used to complement processors to speed up common, computationally-intensive tasks
 - *e.g.*, encryption, machine vision, cryptocurrency mining

Binary Multiplication


Multiplication of unsigned numbers

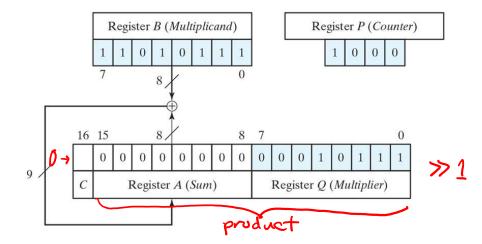
Multiplicand M (14) 1 1 1 0 + 1 1 1 0 Multiplier Q (11) X 1 0 1 1 Partial product 1 + 1 1 1 0 Multiplier Q (11) X 1 0 1 1 Partial product 1 + 0 0 0 0 1 1 1 0 Partial product 2 0 1 0 1 0 1 1 1 1 0 Partial product 2 0 1 0 1 0 1 1 1 0 Partial product 2 0 1 0 1 0							Multip Multip	licand lier Q	M (1 (1		1110 x 1011
Multiplier Q (11) $\frac{x + 10 + 1}{1110}$ Partial product 1 10101 1110 0000 Partial product 2 01010 + 0000 01010 Product P (154) 10011010 Product P (154) 1001101 (a) Multiplication by hand (b) Using multiple adders Partial product 0 $\frac{x + 3_3 + 2 + m_1 + m_0}{m_3 q_0 + m_2 q_0 + m_1 q_1 + m_0 q_1}$ Partial product 1 $\frac{PP1_5 + PP1_4 + PP1_3 + PP1_2 + PP1_1}{PP1_5 + PP1_4 + m_3 q_2 + m_2 q_2 + m_1 q_2 + m_0 q_2}$	*						Partial	produc	ct 0		1110 + 1110
Product P (154) 10011010 Product P (154) 10011010 (a) Multiplication by hand Partial product 0 Partial product 1 Partial product 1 Part	Multiplier Q	(11)		_			Partial	produc	rt 1		10101
Product P (154) 10011010 Product P (154) 1001101 (a) Multiplication by hand (b) Using multiple adders Partial product 0 $\frac{x \ q_3 \ q_2 \ q_1 \ q_0}{m_3 q_0 \ m_2 q_0 \ m_1 q_0 \ m_0 q_0} + m_3 q_1 \ m_2 q_1 \ m_1 q_1 \ m_0 q_1}{pP1_5 \ PP1_4 \ PP1_3 \ PP1_2 \ PP1_1} + m_3 q_2 \ m_2 q_2 \ m_1 q_2 \ m_0 q_2}$			0000	12.0			Partial	produc	ct 2	-	01010
Partial product 0 Partial product 1 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Product P	(154) 1		10			Produc	ct P	(15	÷-	10011010
Partial product 0 Partial product 1 Partial product 1 $\frac{\mathbf{x} q_3 q_2 q_1 q_0}{m_3 q_0 m_2 q_0 m_1 q_0 m_0 q_0} + \frac{m_3 q_1 m_2 q_1 m_1 q_1 m_0 q_1}{p P 1_5 P P 1_4 P P 1_3 P P 1_2 P P 1_1} + \frac{m_3 q_2 m_2 q_2 m_1 q_2 m_0 q_2}{p q_2}$	(a) Multi	plication by	/ hand				(b) Usi	ing mι	ulti <mark>pl</mark> e	adders
Partial product 0 Partial product 1 Partial product 1 $\frac{\mathbf{x} q_3 q_2 q_1 q_0}{m_3 q_0 m_2 q_0 m_1 q_0 m_0 q_0} + \frac{m_3 q_1 m_2 q_1 m_1 q_1 m_0 q_1}{p P 1_5 P P 1_4 P P 1_3 P P 1_2 P P 1_1} + \frac{m_3 q_2 m_2 q_2 m_1 q_2 m_0 q_2}{p q_2}$							111-	<i>m</i> -	т.	m.	
Partial product 0 $ \begin{array}{c} + m_3 q_1 & m_2 q_1 & m_1 q_1 & m_0 q_1 \\ \hline PP1_5 & PP1_4 & PP1_3 & PP1_2 & PP1_1 \\ + m_3 q_2 & m_2 q_2 & m_1 q_2 & m_0 q_2 \\ \end{array} $						x		-			
Partial product 1 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	artial produc	t 0		+	m_3q_1				$m_0 q_0$	
	F	artial produc	t 1		$\overline{PP1}_5$	PP1 ₄	<i>PP</i> 1 ₃	<i>PP</i> 1 ₂	<i>PP</i> 1 ₁		
	P	Partial produc	t 2	-					-		
$+ m_3 q_3 m_2 q_3 m_1 q_3 m_0 q_3$			+	<i>m</i> ₃ <i>q</i> ₃	m_2q_3	m_1q_3	$m_0 q_3$	1	4	1	
Product P $p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$	P	Product P	<i>P</i> ₇	P_6	<i>P</i> ₅	P_4	p_3	P_2	P_1	p_0	

c) Hardware implementation

Parallel Binary Multiplier

Parallel multipliers require a lot of hardware

Sequential Binary Multiplier

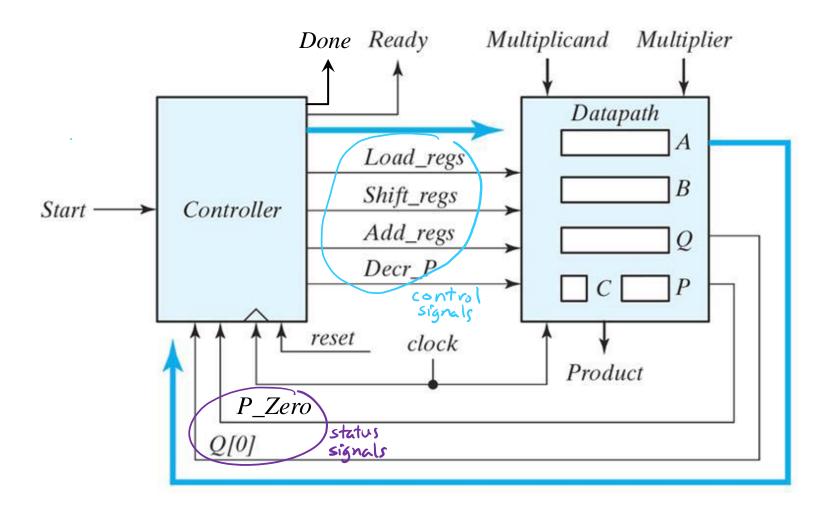

- Design a sequential multiplier that uses only one adder and a shift register
 - Assume one clock cycle to shift and one clock cycle to add
 - More efficient in hardware, less efficient in time
- Considerations:
 - *n*-bit multiplicand and multiplier yield a product at most how wide? 2n-bits orde
 - What are the ports for an n-bit adder? A,B, carry-in, (arry-and, S)
 - How many shift-and-adds do we do and how do we know when to stop? n Operations, use a counter to track

Sequential Binary Multiplier

- Design a sequential multiplier that uses only one adder and a shift register
 - Assume one clock cycle to shift and one clock cycle to add
 - More efficient in hardware, less efficient in time
- Implementation Notes:
 - If current bit of multiplier is 0, then skip the adding step (doi't boller)
 - Instead of shifting multiplicand to the left, we will shift the partial sum (and the multiplier) to the right (some effect, but hardware is different)
 - We will re-use the multiplier register for the lower half of the product (an discard multiplier bits we've already looked at)
 - Treat carry, partial sum, and multiplier as one shift register {C, A, Q}

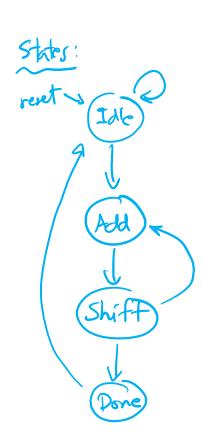
Sequential Binary Multiplier Operation

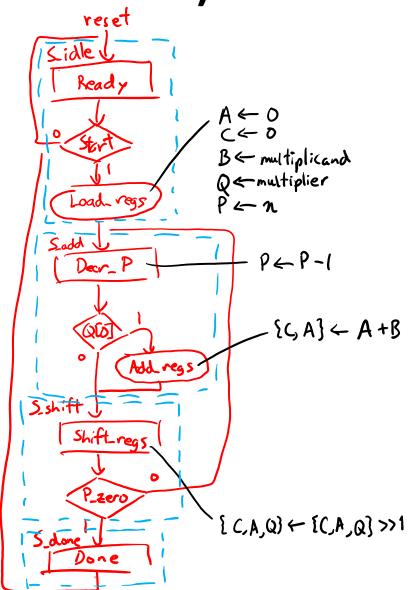
A few steps of:
 11010111
 <u>x 00010111</u>



Operation (completed)	С	А	Q	Р
Initialize computation	0	00000000	0001011 <mark>1</mark>]	1000
Add (Q[8 = 1)	ο	1101011	00016111	OIII
Shift	C	01101011	1000101	0111
Add (Q[0]=1)	1	01000010	10001011	ONO
Shift	0	10100001	010001011	0110
Add (Q (0)=1)	1	01111000	01000 (01	0101
Shift	0	00111100	001000 (0	0101

Binary Multiplier Specification


- Datapath
 - (2*n*+1)-bit *shift register* with bits split into 1-bit *C*, *n*-bit *A*, and *n*-bit Q { $(C, A, Q) \leftarrow (C, A, Q) \gg 1$
 - Multiplicand stored in register B, multiplier stored in Q
 - An *n*-bit parallel adder adds the contents of *B* to *A* and outputs to {*C*, *A*}
 - A $\lceil \log_2(n+1) \rceil$ -bit counter **P**
- Control
 - Inputs *Start* and *Reset*, outputs *Ready* and *Done*
 - Status signals: Q[0] (or all of Q), P. zero (or all of P)
 - Control signals: Shift_regs, Locd_regs, Add_regs, Decr_P (Initralize)


Binary Multiplier Block Diagram

Binary Multiplier (ASMD Chart)

ASMD:

Binary Multiplier Implementation

Controller Logic

$$Load_regs = S_idle \cdot Star^{4}$$

 $Shift_regs = S_shift$
 $Add_regs = S_add \cdot Q[o]$
 $Decr_P = S_add$
 $Ready = S_idle$
 $Done = S_done$

Binary Multiplier (SV, Datapath)

Binary Multiplier (SV, Datapath)

```
module datapath #(parameter WIDTH=8)
                  (product, Q, P, multiplicand, multiplier, clk,
                   Load regs, Shift regs, Add regs, Decr P);
   // port definitions
   . . .
   // internal logic
   . . .
   // datapath Logic
   always ff @(posedge clk) begin
      if (Load regs) begin
          A <= 0; C <= 0; P <= WIDTH;
          B <= multiplicand;</pre>
          0 <= multiplier;</pre>
      end
      if (Decr_P) P <= P - 1;</pre>
      if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
   end // always ff
   assign product = {A, Q};
endmodule
```